Skip to main content

Advertisement

Log in

Nitrogen doping in the surface layers of Ti3C2Tx/rGO film via nitrogen ion implantation for supercapacitor

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal carbides (MXenes) are widely used in the field of electrochemical energy storage due to their unique properties, but the efficient use of multilayer MXenes (m-MXenes) to prepare flexible electrodes remains a challenge. Herein, large-size graphene oxide (GO) is used as a conductive adhesive to bridge the multilayer Ti3C2Tx (m-Ti3C2Tx) to form a Ti–O-C bond to form the flexible Ti3C2Tx/GO (MG) film which was subsequently implanted by nitrogen ions to dope nitrogen in its surface layers (N-Ti3C2Tx/GO, NMG). The NMG was annealed at 400 ℃ to obtain the N-Ti3C2Tx/reduced GO (N-Ti3C2Tx/rGO, NMRG) electrode for supercapacitor. Compared with the Ti3C2Tx/rGO (MRG), the specific capacitance of NMRG-1 (nitrogen ion implantation dose is 1 × 1017) reaches 115 F g−1 (248. 7 F cm−3) at 0.2A g−1, while it is 95 F g−1 (167.8 F cm−3) of MRG. The rate performance of NMRG-1 is increased from 31.5 (MRG) to 76.1%. In addition, NMRG-1 electrode can maintain 73% capacitance retention and 85% Coulomb efficiency after 10,000 cycles at 2A g−1. And it exhibits energy density of 8.6 Wh L−1 at power density of 122.4W L−1. The results show that ion implantation provides a selective method for nitrogen doping in multilayer MXene, making it more competitive in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma R, Chen Z, Zhao D, Zhang X, Zhuo J, Yin Y, Wang X, Yang G, Yi F (2021) Ti3C2Tx MXene for electrode materials of supercapacitors. J Mater Chem A 9:11501–11529

    Article  CAS  Google Scholar 

  2. Zhang C, Ma Y, Zhang X, Abdolhosseinzadeh S, Sheng H, Lan W, Pakdel A, Heier J, Nüesch F (2020) Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater 3:29–55

    Article  CAS  Google Scholar 

  3. Chen L, Wang J, Yang Z, Zhang J, Hou S, Hao C, Zhang J (2022) Recent advances in flexible supercapacitors. J Solid State Electrochem 26:2627–2658

    Article  CAS  Google Scholar 

  4. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Gogots LH, Barsoum MW (2012) Two-dimensional transition metal carbides ACS nano 16:1322–1331

    Google Scholar 

  5. Chen X, Zhu Y, Zhang M, Sui J, Peng W, Li Y, Zhang G, Zhang F, Fan X (2019) N-butyllithium-treated Ti(3)C(2)T(x) MXene with excellent pseudocapacitor performance. ACS Nano 13:9449–9456

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han M, Yang W, Liu J, Wang X, Gogotsi Y, Razal JM (2020) Scalable manufacturing of free-standing, strong Ti(3) C(2) T(x) MXene films with outstanding conductivity. Adv Mater 32:e2001093

    Article  PubMed  Google Scholar 

  7. Chen N, Yang W, Zhang C (2021) Perspectives on preparation of two-dimensional MXenes. Sci Technol Adv Mater 22:917–930

    Article  Google Scholar 

  8. Verger L, Natu V, Carey M, Barsoum MW (2019) MXenes: an introduction of their synthesis, select properties, and applications. Trends Chem 1:656–669

    Article  CAS  Google Scholar 

  9. Kong J, Yang H, Guo X, Yang S, Huang Z, Lu X, Bo Z, Yan J, Cen K, Ostrikov KK (2020) High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett 5:2266–2274

    Article  CAS  Google Scholar 

  10. Zhang Z, Yao Z, Li Y, Lu S, Wu X, Jiang Z (2022) Cation-induced Ti3C2Tx MXene hydrogel for capacitive energy storage. Chem Eng J 433:1385–8947

    Article  Google Scholar 

  11. McDaniel RM, Carey MS, Wilson OR, Barsoum MW, Magenau AJD (2021) Well-dispersed nanocomposites using covalently modified, multilayer, 2D titanium carbide (MXene) and in-situ “click” polymerization. Chem Mater 33:1648–1656

    Article  CAS  Google Scholar 

  12. Sarycheva A, Gogotsi Y (2020) Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater 32:3480–3488

    Article  CAS  Google Scholar 

  13. Malaki M, Maleki A, Varma RS (2019) MXenes and ultrasonication. J Mater Chem A 7:10843–10857

    Article  CAS  Google Scholar 

  14. Wu Q, Wang Y, Li P, Chen S, Wu F (2021) Electrochemical performance and charge storage mechanism of few-layer MXene titanium carbide for supercapacitors. J Electrochem Soc 168:090549

    Article  CAS  Google Scholar 

  15. Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, Wang L (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38:368–376

    Article  CAS  Google Scholar 

  16. Liu Z, Wang L, Xu Y, Guo J, Zhang S, Lu Y (2021) A Ti3C2TX@PEDOT composite for electrode materials of supercapacitors. J Electroanal Chem 881:114958

    Article  CAS  Google Scholar 

  17. Ma Z, Li Q, Pang H, Yu Z, Yan D (2022) Ti3C2Tx@K2Ti4O9 composite materials by controlled oxidation and alkalization strategy for potassium ion batteries. Ceram Int 48:16418–16424

    Article  CAS  Google Scholar 

  18. Fu J, Yun J, Wu S, Li L, Yu L, Kim KH (2018) Architecturally robust graphene-encapsulated MXene Ti(2)CT (x)@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 10:34212–34221

    Article  CAS  PubMed  Google Scholar 

  19. Qi J, Gu H, Ruan C, Zhu L, Meng Q, Sui Y, Feng X, Wei W, Zhang H (2022) NiCo2S4 decorated multilayer titanium carbide MXene electrode for asymmetric supercapacitor. Ionics 28:2979–2989

    Article  CAS  Google Scholar 

  20. Shen L, Zhao W, Wang K, Xu J (2021) GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings. J Hazard Mater 417:126048

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Wei G, Li J, Han W, Gogotsi Y (2017) Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J Mater Chem A 5:17442–17451

    Article  CAS  Google Scholar 

  22. Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E, Fang S, Baughman RH, Jiang L, Cheng Q (2020) Super-tough MXene-functionalized graphene sheets. Nat Commun 11:2077

    CAS  PubMed  Google Scholar 

  23. Wang M, Liu X, Liu H, Zhao D, Wu X (2022) NiCo layered double hydroxide nanosheets with enhanced electrochemical performance. J Alloy Compd 903:163926

    Article  CAS  Google Scholar 

  24. Wang X, Sun Y, Zhang W-C, Wu X (2023) Flexible CuCo2O4@Ni-Co-S hybrids as electrode materials for high-performance energy storage devices. Chin Chem Lett 34:107593

    Article  CAS  Google Scholar 

  25. Sun Y, Wang X, Wu X (2023) High-performance flexible hybrid capacitors by regulating NiCoMoS@Mo0.75-LDH electrode structure. Mater Res Bull 158:112073

  26. Liu Y, Wu X (2022) Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chin Chem Lett 33:1236–1244

    Article  CAS  Google Scholar 

  27. Wu G, Tan P, Wu X, Peng L, Cheng H, Wang CF, Chen W, Yu Z, Chen S (2017) High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv Func Mater 27:1702493

    Article  Google Scholar 

  28. Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6:1601111

    Article  Google Scholar 

  29. Balamurugan J, Nguyen TT, Aravindan V, Kim NH, Lee JH (2018) Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life. Adv Func Mater 28:1804663

    Article  Google Scholar 

  30. Lu C, Yang L, Yan B, Sun L, Zhang P, Zhang W, Sun Z (2020) Nitrogen-doped Ti3C2Tx MXene: mechanism investigation and electrochemical analysis. Adv Func Mater 30:2000852

    Article  CAS  Google Scholar 

  31. Wang J, Cai Z, Lin D, Chen K, Zhao L, Xie F, Su R, Xie W, Liu P, Zhu R (2021) Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells. ACS Appl Mater Interfaces 13:32495–32502

    Article  CAS  PubMed  Google Scholar 

  32. Chen D, Shao S, Zhang W, Zhao J, Lian M (2022) Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal Chim Acta 1197:339520

    Article  CAS  PubMed  Google Scholar 

  33. Tang Y-J, Wang Y, Wang X-L, Li S-L, Huang W, Dong L-Z, Liu C-H, Li Y-F, Lan Y-Q (2016) Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv Energy Mater 6:1600116

    Article  Google Scholar 

  34. Zhao Y, Wang X, Fu E, Han D, Wang P, Wu Z, Chen Y, Chen Y, Zhao Z (2018) Direct synthesis of high-quality nitrogen-doped graphene via ion implantation. Carbon 139:732–739

    Article  CAS  Google Scholar 

  35. Bai Z, Zhang L, Liu L (2016) Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 8:8761–8772

    Article  CAS  PubMed  Google Scholar 

  36. Pazniak H, Benchakar M, Bilyk T, Liedl A, Busby Y, Noel C, Chartier P, Hurand S, Marteau M, Houssiau L, Larciprete R, Lacovig P, Lizzit D, Tosi E, Lizzit S, Pacaud J, Celerier S, Mauchamp V, David ML (2021) Ion implantation as an approach for structural modifications and functionalization of Ti3C2Tx MXenes. ACS Nano 15:4245–4255

    Article  CAS  PubMed  Google Scholar 

  37. Niu L, Yang Q, Wang W, Yang Y, Xu J, Li Q (2023) Creation of nanopores and nitrogen doping in the surface layers of reduced graphene oxide electrode via ions implantation resulting in enhanced electrochemical performance for supercapacitor. J Energy Stor 58:106453

    Article  Google Scholar 

  38. Guo R, Han X, Yuan P, He X, Li Q, Sun J, Dang L, Liu Z, Zhang Y, Lei Z (2021) Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor. Nano Res 15:3254–3263

    Article  Google Scholar 

  39. Tian J, Wu S, Yin X, Wu W (2019) Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl Surf Sci 496:143696

    Article  CAS  Google Scholar 

  40. Shen C, Wang L, Zhou A, Wang B, Wang X, Lian W, Hu Q, Qin G, Liu X (2018) Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials 8:80

    Article  PubMed  PubMed Central  Google Scholar 

  41. Subramanian A, Pratap T, Kurup DA, Thangaraj G, Bhowmik S, Mukherjee S, Rane R (2016) Titanium nitride deposition on aluminium for adhesion promotion. Surf Eng 32:272–278

    Article  CAS  Google Scholar 

  42. Guo M, Liu C, Zhang Z, Zhou J, Tang Y, Luo S (2018) Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: in situ regulation of interlayer conductivity and spacing. Adv Func Mater 28:1803196

    Article  Google Scholar 

  43. Zhang X, Liu X, Feng Y, Qiu S, Shao Y, Liao Q, Li H, Liu Y (2022) In situ modified mesoporous MXene film with excellent oxidation resistance for high-performance supercapacitor. Appl Mater Today 27:101483

    Article  Google Scholar 

  44. Kaewpijit P, Qin J, Pattananuwat P (2019) Preparation of MXene/N, S doped graphene electrode for supercapacitor application. IOP Conference Series: Materials Science and Engineering 600:012008

    Article  CAS  Google Scholar 

  45. Fang Y, Liu Z, Han J, Jin Z, Han Y, Wang F, Niu Y, Wu Y, Xu Y (2019) High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv Energy Mater 9:1803406

    Article  Google Scholar 

  46. Wang K, Zheng B, Mackinder M, Baule N, Qiao H, Jin H, Schuelke T, Fan QH (2019) Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Stor Mater 20:299–306

    Article  Google Scholar 

  47. Bonhomme FJCL, Servant L (2001) Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc 11:148

  48. Wang Y, Cui Y, Kong D, Wang X, Li B, Cai T, Li X, Xu J, Li Y, Yan Y, Hu H, Wu M, Xue Q, Yan Z, Zhao L, Xing W (2021) Stimulation of surface terminating group by carbon quantum dots for improving pseudocapacitance of Ti3C2Tx MXene based electrode. Carbon 180:118–126

    Article  CAS  Google Scholar 

  49. Mishra M, Alwarappan S, Kanjilal D, Mohanty T (2018) The effect of low energy nitrogen ion implantation on graphene nanosheets. Electron Mater Lett 14:488–498

    Article  CAS  Google Scholar 

  50. Wang Z, Li X, Xuan C, Li J, Jiang Y, Xiao J (2020) Photo-synergetic nitrogen-doped MXene /reduced graphene oxide sandwich-like architecture for high-performance lithium-sulfur batteries. Int J Energy Res 45:2728–2738

    Article  Google Scholar 

  51. Yang L, Zheng W, Zhang P, Chen J, Zhang W, Tian WB, Sun ZM (2019) Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim Acta 300:349–356

    Article  CAS  Google Scholar 

  52. Zhu JianFeng, Tang Yi, Yang ChenHui, Wang F, Cao M (2016) Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J Electrochem Soc 163:A785–A791

    Article  CAS  Google Scholar 

  53. Dall’Agnese Y, Rozier P, Taberna P-L, Gogotsi Y, Simon P (2016) Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sources 306:510–515

    Article  Google Scholar 

  54. Ghosh M, Szunerits S, Cao N, Kurungot S, Boukherroub R (2022) Single-Step Synthesis of Exfoliated Ti3C2Tx MXene through NaBF4/HCl Etching as electrode material for asymmetric supercapacitor. ChemistrySelect 7:e202201166

    Article  CAS  Google Scholar 

  55. Wang H, Zhang J, Wu Y, Huang H, Jiang Q (2018) Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J Phys Chem Solids 115:172–179

    Article  CAS  Google Scholar 

  56. Zhao C, Wang Q, Zhang H, Passerini S, Qian X (2016) Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl Mater Interfaces 8:15661–15667

    Article  CAS  PubMed  Google Scholar 

  57. Tang Y, Zhu J, Yang C, Wang F (2016) Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2MXene with long etching time. J Electrochem Soc 163:A1975–A1982

    Article  CAS  Google Scholar 

  58. Ma W, Tang H, Li T, Wang L, Zhang L, Yu Y, Qiao Z, Liu W (2022) Research about the capacitance properties of ion-induced multilayer and self-assembled monolayer Ti(3)C(2)T (x). RSC Adv 12:3554–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of Postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 27:5314–5323

    Article  CAS  Google Scholar 

  60. Gao Y, Wang L, Li Z, Zhang Y, Xing B, Zhang C, Zhou A (2015) Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. J Adv Ceram 4:130–134

    Article  CAS  Google Scholar 

  61. Luo Y, Yin X, Luo Y, Xie H, Bin X, Tian Y, Ju M, Que W (2021) Micro-structural and flexible reduced graphene oxide/Ti3C2Tx composite film electrode with long cycle life for supercapacitor. Adv Mater Interfaces 9:2101619

    Article  Google Scholar 

  62. Zhang J, Jiang D, Liao L, Cui L, Zheng R, Liu J (2022) Ti3C2Tx MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities. Chem Eng J 429:132232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also thank Dr. Yuanjun Yang from Hefei University of Technology for the valuable discussion and partial funding support.

Funding

The authors appreciate financial support from the National Natural Science Foundation of China ( 51972029, 52072102) for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Jun Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2241 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wang, W., Li, X. et al. Nitrogen doping in the surface layers of Ti3C2Tx/rGO film via nitrogen ion implantation for supercapacitor. J Solid State Electrochem 27, 1955–1967 (2023). https://doi.org/10.1007/s10008-023-05488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05488-9

Keywords

Navigation