Skip to main content
Log in

Synergistic corrosion inhibition effect of copolymer and an amphoteric surfactant on carbon steel in 3.5 NaCl solution: experimental and theoretical research

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The copolymer poly (aniline-co-orthotoluidine) noted poly (ANI-co-OT) was chemically synthesized and characterized by FT-IR, UV–Vis, and XRD techniques. XRD results confirm the amorphous nature of the copolymer. FT-IR and UV–Vis results indicate that the spectrum of the copolymer includes all the bands relating to the functional groups of the homopolymers polyaniline (PANI) and poly-orthotoluidine (POT). It was revealed that, contrastingly to the copolymer’s solubility in dimethylformamide (DMF), the homopolymers have a low solubility. The potentiodynamic polarization technique has been employed in order to study this copolymer’s inhibition effects on the corrosion of carbon steel X52 in a 3.5% NaCl solution. The aforementioned study illuminated the following. The copolymer exhibits high inhibition activity towards the corrosive action of NaCl and its adsorption obeys the Langmuir adsorption isotherm model. The calculated Gibbs free energy (∆G0ads) revealed the chemisorption of this copolymer on the surface of the carbon steel. In addition, a synergistic effect was observed when the copolymer poly (ANI-co-OT) was mixed with the amphoteric surfactant cocamidopropyl betaine (CAPB) where the inhibition efficiency increased from 68 to 92%. Also, it was perceived that the adsorption of the copolymer/surfactant mixture adhered to the Langmuir adsorption isotherm. The calculated Gibbs free energy (∆G0ads) revealed both chemisorption and physisorption of the mixed copolymer and surfactant on the carbon steel surface. Increasing temperature slightly decreases the inhibition efficiency, indicating that the mixed copolymer and surfactant adsorb on the carbon steel surface via simultaneous chemisorption and physisorption. The good inhibition efficiency was related to the formation of inhibitor–adsorption film on the surface of the carbon steel, which is confirmed by the surface analysis. Quantum chemical results using the density functional theory (DFT) corroborated the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Moulai F, Hadjersi T, Achour A (2021) The effect of zinc shape on its corrosion mitigation as an anode in aqueous Zn/MnO2 battery. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2021.115140

  2. Benchikh A, Aitout R, Makhloufi L, Benhaddad L, Saidani B (2009) Soluble conducting poly(aniline-co-orthotoluidine) copolymer as corrosion inhibitor for carbon steel in 3% NaCl solution. Desalination 249:466–474

    Article  CAS  Google Scholar 

  3. Dadgarinezhad A, Baghaei F (2009) The inhibition mild steel corrosion in phosphoric acid solutions by 2-phenyl-1-hydrazine carboxamide. J Chil Chem Soc 54:208–211

    Article  CAS  Google Scholar 

  4. Keny SJ, Kumbhar AG, Thinaharan C, Venkateswaran G (2008) Gallic acid as a corrosion inhibitor of carbon steel in chemical decontamination formulation. Corros Sci 50:411–419

    Article  CAS  Google Scholar 

  5. Müller B, Fischer S (2006) Epoxy ester resins as corrosion inhibitors for aluminium and zinc pigments. Corros Sci 48:2406–2416

    Article  Google Scholar 

  6. Singh Bisht BM, Bhandari H, Gairola SP, Dhawan SK (2016) Development of conducting copolymer based on poly (o-toluidine-co-2-amino 5 napthol 7 sulphonic acid): an efficient material for protection of iron in highly corrosive environment. Int J Res Eng Technol 5:44–51

    Article  Google Scholar 

  7. Mohd R, Suhail S, Afidah AR, Umesh W (2014) Polyaniline/palm oil blend for anticorrosion of mild steel in saline environment. J Appl Chem. https://doi.org/10.1155/2014/973653

    Article  Google Scholar 

  8. Bhandari H, Choudhary V, Dhawan SK (2008) Synergistic effect of copolymers composition on the electrochemical, thermal, and electrical behavior of 5-lithiosulphoisophthalic acid doped poly(aniline-co-2-isopropylaniline): synthesis, characterization, and applications. Polym Adv Technol 20:1024–1034

    Article  Google Scholar 

  9. Yagan A, Pekmez NO, Yildiz A (2006) Corrosion inhibition by poly(N-ethylaniline) coatings for mild steel in aqueous acidic solutions. Prog Org Coat 57:314–318

    Article  CAS  Google Scholar 

  10. Hung HM, Linh DK, Chinh NT, Duc LM, Trung VQ (2019) Improvement of the corrosion protection of polypyrrole coating for CT3 mild steel with 10-camphorsulfonic acid and molybdate as inhibitor dopants. Prog Org Coat 131:407–416

    Article  CAS  Google Scholar 

  11. Gvozdenović M, Džunuzović E, Jugović B, Grgur B (2018) Polyaniline based corrosion inhibitors for conventional organic coatings. Zastita Materijala 59:282–292

    Article  Google Scholar 

  12. Nguyen MT, Diaz AF (1995) Water-soluble poly(aniline-co-o-anthranilic acid) copolymers. Macromolecules 28:3411–3415

    Article  CAS  Google Scholar 

  13. Yong L, Huixia F, Hou X, Wu HX (2022) Carboxymethyl cellulose polyaniline composites as efficient corrosion inhibitor for Q235 steel in 1M HCl solution. Int J Electrochem. https://doi.org/10.20964/2022.11.69

  14. Kong P, Feng H, Chen N, Lu Y, Li S, Wang P (2019) Polyaniline/chitosan as a corrosion inhibitor for mild steel in acidic medium. RSD Adv 9:9211–9217

    Article  CAS  Google Scholar 

  15. Lei Y, Qiu Z, Tan N, Du H, Li D, Liu J, Liu T, Zhang W, Chang X (2020) Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on caron steel in 3.5% NaCl solution. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2019.105430

  16. Ilassi K, Bahgat A, Sadasivuni K K, Mrlik M (2018) Anti-corrosive and oil sensitive coatings based on epoxy/polyaniline/magnetite-clay composites through diazonium interfacial chemistry. Sci Rep. https://doi.org/10.1038/s41598-018-31508-0

  17. Dhawan SK, Trivedi DC (1993) Influence of polymerization conditions on the properties of poly(2-methylaniline) and its copolymer with aniline. Synth Met 60:63–66

    Article  CAS  Google Scholar 

  18. Zhang F, Li X, Deng S, Tang M, Du G (2021) Amphoteric surfactant of octadecyl dimethyl betaine as an efficient corrosion inhibitor for cold rolled steel in phosphoric acid solution. J Mater Res Technol 15:7050–7069

    Article  CAS  Google Scholar 

  19. Zhuang W, Wang X, Zhu W, Zhang Y, Sun D, Zhang R, Wu C (2021) Imidazoline gemini surfactants as corrosion inhibitors for carbon steel X70 in NaCl solution. ACS Omega 6:5653–5660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El Ibrahimi B, Jmiai A, Bazzi L, El Issami S (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem 13:740–771

    Article  Google Scholar 

  21. Jacob SE, Amini S (2008) Cocamidopropyl betaine. Dermatitis 19:157–160

    Article  CAS  PubMed  Google Scholar 

  22. Basheva ES, Ganchev DN, Denkov D, Kasuga K, Satoh N, Tsujii K (2000) Role of betaine as foam booster in the presence of silicone oil drops. Langmuir 16:1000–1013

    Article  CAS  Google Scholar 

  23. Fowler JF, Zug KM, Tylor JS, Storrs FJ, Sherertz EA, Sasseville DA, Rietschel RL, Pratt MD, Mathia CGT, Marks JG, Maibach HI, Fransway AF, Deleo VA, Belsito DV (2004) Allergy to cocamidopropyl betaine and amidoamine in North America. Dermatitis 15:5–6

    Article  PubMed  Google Scholar 

  24. Foti C, Bonamonte D, Mascolo G, Corcelli A, Lobasso S, Rigano L, Angelini G (2003) The role of 3-dimethylaminopropylamine and amidoamine in contact allergy to cocoamidopropylbetaine. Contact Dermat 48:194–198

    Article  CAS  Google Scholar 

  25. Mobin M, Khan MA (2011) Adsorption and corrosion inhibition behavior of polyethylene glycol and surfactants additives on mild steel in H2SO4. J Mater Eng Perform 23:222–229

    Article  Google Scholar 

  26. Mobin M, Khan MA (2013) Synergistic influence of polyvinyl alcohol and surfactants on the corrosion inhibition of mild steel in 0.1 M H2SO4. Chemical Engineering and Communication 200:1149–1169

    Article  CAS  Google Scholar 

  27. Yousefi SR, Alshamsi HA, Amiri O, Salavati-Niasari M (2021) Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J Mol Liq 337:116405

    Article  CAS  Google Scholar 

  28. Mehdizadeh P, Jamdar M, Mahdi MA, Abdulsahib WK, Jasim LS, Yousefi SR, Salavati-Niasari M (2023) Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/visible light for removal of organic pollutants in water. Arab J Chem 16:104579

    Article  CAS  Google Scholar 

  29. Yousefi SR, Sobhani A, Salavati-Niasari M (2017) A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv Powder Technol 28:1258–1262

    Article  CAS  Google Scholar 

  30. Yousefi SR, Masjedi-Arani M, Morassaei MS, Salavati-Niasari M, Moayedi H (2019) Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int J Hydrogen Energy 44:24005–24016

    Article  CAS  Google Scholar 

  31. Mahdi MA, Yousefi SR, Jasim LS, Salavati-Niasari M (2022) Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int J Hydrogen Energy 47:14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  32. Yousefi SR, Ghanbari M, Amiri O, Marzhoseyni Z, Mehdizadeh P, Hajizadeh-Oghaz M, Salavati-Niasari M (2021) Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J Am Ceram Soc 104:2952–2965

    Article  CAS  Google Scholar 

  33. Yousefi SR, Sobhani A, Alshamsi HA, Salavati-Niasari M (2021) Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv 11:11500–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yousefi SR, Amiri O, Salavati-Niasari M (2019) Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason Sonochem 58:104619

  35. Yousefi SR, Ghanbari D, Salavati-Niasari M, Hassanpour M (2016) Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J Mater Sci: Mater Electron 27:1244–1253

    CAS  Google Scholar 

  36. Zulfareen N, Kannan K, Venugopal T, Gnanavel S (2016) Synthesis, characterization and corrosion inhibition efficiency of N-(4-(morpholinomethyl carbamoyl phenyl) furan-2-carboxamide for brass in HCl medium. Arab J Chem 9:121–135

    Article  CAS  Google Scholar 

  37. Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  38. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  39. Kokalj A (2010) Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochim Acta 56:745–755

    Article  CAS  Google Scholar 

  40. Bhadra S, Kim NH, Rhee KY, Lee JH (2009) Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polym Int 58:1173–1180

    Article  CAS  Google Scholar 

  41. Oh M, Park SJ, Jung Y, Kim S (2012) Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met 162:695–701

    Article  CAS  Google Scholar 

  42. Pant HC, Patra MK, Negi SC, Bhatia A, Vadera SR, Kumar N (2006) Studies on conductivity and dielectric properties of polyaniline–zinc sulphide composites. Bull Mater Sci 29:379–384

    Article  CAS  Google Scholar 

  43. Reddy KR, Sin BC, Ryu KS, Noh J, Lee Y (2009) In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159:1934–1939

    Article  CAS  Google Scholar 

  44. Pouget JP, Hsu CH, MacDiarmid AG, Epstein AJ (1995) Structural investigation of metallic PAN-CSA and some of its derivatives. Synth Met 69:119–120

    Article  CAS  Google Scholar 

  45. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384

    Article  CAS  Google Scholar 

  46. Wang Q, Li JL, Gao F, Li WS, Wu KZ, Wang XD (2008) Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Mater 23:275–280

    Article  Google Scholar 

  47. Padmapriya S, Seshadri H, Jaidev KJ, Venkatachalam S, Kumar D, Pal S (2017) Storage and evolution of hydrogen in acidic medium by polyaniline. Int J Energy Res 42:1196–1209

    Article  Google Scholar 

  48. Vadiraj KT, Belagali SL (2015) Characterization of polyaniline for optical and electrical properties. J Appl Chem 8:53–56

    Google Scholar 

  49. Fuseini M, El-Shazly AH, Elkady MF (2020) Effects of doping on zeta potential and pH of polyaniline colloidal suspension. Mater Sci Forum 1008:114–120

    Article  Google Scholar 

  50. Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci 22:273–280

    Article  Google Scholar 

  51. Luzny W, Banka E (2000) Relations between the structure and electric conductivity of polyaniline protonated with camphorsulfonic acid. Macromolecules 33:425–429

    Article  CAS  Google Scholar 

  52. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) X-ray structure of polyaniline 24(3):779–789. https://doi.org/10.1021/ma00003a022

    Article  CAS  Google Scholar 

  53. Zhang J, LI Y, Zhang S, (2018) Preparation, characterization and corrosion evaluation of poly(o-toluidine), poly(m-toluidine), and poly(p-Toluidine) blended with waterborne polyurethane. JOM 70:2660–2666

    Article  CAS  Google Scholar 

  54. Reddy KR, Lee KP, Gopalan AI (2007) Self-assembly directed synthesis of poly(ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7:3117–3125

    Article  CAS  PubMed  Google Scholar 

  55. Khan A, Khan I, Asiri AM (2021) Preparation and characterization of new and novel poly-o-toluidine Sn (II) silicotungstate ternary nanocomposite and its environment application as indicator electrode. J Saudi Chem Soc 25:101385–101392

    Article  CAS  Google Scholar 

  56. Ping Z (1996) In situ FTIR-attenuated total reflection spectroscopic investigations on the base–acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. J Chem Soc Faraday Trans 92:3063–3067

    Article  CAS  Google Scholar 

  57. Sedenkova I, Trchova M, Stejskal J (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water-FTIR and Raman spectroscopic studies. Polym Degrad Stab 93:2147–2157

    Article  CAS  Google Scholar 

  58. Song H, Zhang J, Song P, Xiong Y (2019) Maize-like ionic liquid@polyaniline nanocomposites for high performance supercapacitor. e-Polymers 19:313–322

  59. Liu H, Hu XB, Wang JY, Boughton RI (2002) Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35:9414–9419

    Article  CAS  Google Scholar 

  60. Gruger A, Novak A, Regis A, Colomban Ph (1994) Infrared and Raman study of polyaniline part ii: influence of ortho substituents on hydrogen bonding and UV/Vis – near – IR electron charge transfer. J Mol Struct 328:153–167

    Article  CAS  Google Scholar 

  61. Fujita I, Ishiguchi M, Shiota H, Dani T, Kosai KJ (1992) Spectroscopic study of polytoluidines in the UV-visible and IR regions. J Appl Polym Sci 44:987–992

    Article  CAS  Google Scholar 

  62. Savitha P, Sathyanarayama DN (2004) Synthesis and characterization of soluble conducting poly (o-/m-toluidine-co-o-nitroaniline). Synth Metals 145:113–118

    Article  CAS  Google Scholar 

  63. Li XG, Wang LX, Jin Y, Zhu ZL, Yang YL (2001) Preparation and identification of a soluble copolymer from pyrrole and o-toluidine. J Appl Polym Sci 82:510–518

    Article  CAS  Google Scholar 

  64. Andriianova AN, Biglova YN, Mustafin AG (2020) Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv 10:7468–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ghobashy MM, Alkhursani SA, Madani M (2018) Radiation-induced nucleation and pH-controlled nanostructure shape of polyaniline dispersed in DMF. Polym Bull 75:5477–5492

    Article  CAS  Google Scholar 

  66. Xin LY, Zhang XG, Zhang GQ, Shen CM (2005) Synthesis and characterization of aniline and o-toluidine conducting copolymer microtubes with the template-synthesis method. J Appl Polym Sci 96:1539–1543

    Article  CAS  Google Scholar 

  67. Aslam J, Lone IH, Radwan N, Mobin M, Zehra S, Aslam R (2018) Development of poly(aniline-co-o-toluidine)/TiO2 nanocomposite coatings for low carbon steel corrosion in 3.5% NaCl solution. J Adhes Sci Technol 32:2552–2568

    Article  CAS  Google Scholar 

  68. Wu HI, Huang JB, Luo XQ (2014) Synthesis and characterization of cocamidopropyl betaine. China Surfactant Detergent & Cosmetics 44:23–25

    CAS  Google Scholar 

  69. Carolei L, Gutz IGR (2005) Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR. Talanta 66:118–124

    Article  CAS  PubMed  Google Scholar 

  70. May M (2016) Corrosion behavior of mild steel immersed in different concentrations of NaCl solutions. J Sebha University 15:1–12

    Google Scholar 

  71. Jovancicevic V, Bockris JO’M, (1986) The mechanism of oxygen reduction on iron in neutral solution. J Electrochem Soc 133:1797–1807

    Article  CAS  Google Scholar 

  72. Ituen E, Mkpenie V, Ekemini E (2019) Adsorptive Fe-nanoparticles mediated by Musa sapientum peels extract as anticorrosion additive for aqueous oilfield descaling solution. Sci Afr. https://doi.org/10.1016/j.sciaf.2019.e00075

    Article  Google Scholar 

  73. Perdew JP, Wang Y (1992) Accurate and simple representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  74. Gopiraman M, Selvakumaran N, Kesavan D, Kim IS, Karvembu R (2012) Chemical and physical interactions of 1-benzoyl-3,3- disubstituted thiourea derivatives on mild steel surface: corrosion inhibition in acidic media. Ind Eng Chem Res 51:7910–7922

    Article  CAS  Google Scholar 

  75. Ituen E, Akaranta O, James A (2017) Evaluation of performance of corrosion inhibitors using adsorption isotherm models: an overview. Chem Sci Int J. https://doi.org/10.9734/CSIJ/2017/28976

    Article  Google Scholar 

  76. Badiea AM, Mohana KN (2009) Effect of temperature and fluid velocity on corrosion mechanism of low carbon steel in presence of 2-hydrazino-4,7-dimethylbenzothiazole in industrial water medium. Corros Sci 51:2231–2241

    Article  CAS  Google Scholar 

  77. Umoren SA, Banera MJ, Alonso-Garcia T, Gervasi CA, Mirifico MV (2013) Inhibition of mild steel corrosion in HCl solution using chitosan. Cellulose 20:2529–2545

    Article  CAS  Google Scholar 

  78. Tao Z, He W, Wang S, Zhang S, Zhou GA (2012) Study of differential polarization curves and thermodynamic properties for mild steel in acidic solution with nitropenyltriazole derivative. Corros Sci 60:205–213

    Article  CAS  Google Scholar 

  79. Arab ST (2008) Inhibition action of thiosemicabazone and some of it is ρ-substituted compounds on the corrosion of iron-base metallic glass alloy in 0.5 M H2SO4 at 30°C. Mater Res Bull 43:510–521

    Article  CAS  Google Scholar 

  80. Wang X, Yang H, Wang F (2010) A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corros Sci 52:1268–1276

    Article  CAS  Google Scholar 

  81. Li SL, Wang YG, Chen SH, Yu R, Lei SB, Ma HY, Liu DX (1999) Some aspects of quantum chemical calculations for the study of Schiff base corrosion inhibitors on copper in NaCl solutions. Corros Sci 41:1769–1782

    Article  CAS  Google Scholar 

  82. Usman J, Umoren SA, Gasem ZM (2017) Inhibition of API 5L X60 steel corrosion in CO2-saturated 3.5% NaCl solution by tannic acid and synergistic effect of KI additive. J Mol Liq 237:146–156

    Article  CAS  Google Scholar 

  83. Oguzie EE, Li Y, Wang SG, Wang F (2011) Understanding corrosion inhibition mechanisms—experimental and theoretical approach. RSC Adv 1:866–873

    Article  CAS  Google Scholar 

  84. Okafor PC, Zheng Y (2009) Synergistic inhibition behaviour of methylbenzene quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions. Corros Sci 51:850–859

    Article  CAS  Google Scholar 

  85. Yan Q, Yin Q, Cui J, Wang X, Qiao Y, Zhou H (2021) Effect of temperature on corrosion behaviour of E690 steel in 3.5 wt. % NaCl solution. Mater Res Express. https://doi.org/10.1088/2053-1591/abda69

  86. Yuan W, Huang F, Liu J, Hu Q, Franck Cheng Y (2018) Effects of temperature and applied strain on corrosion of X80 pipeline steel in chloride solutions. Corros Eng Sci Technol 53:393–402

    Article  CAS  Google Scholar 

  87. Khadom AA (2014) Effect of temperature on corrosion inhibition of copper-nickel alloy by tetraethylenepentamine under flow conditions. J Chil Chem Soc. https://doi.org/10.4067/S0717-97072014000300004

    Article  Google Scholar 

  88. Szauer T, Brand A (1981) Adsorption of oleates of various amines on iron in acidic solution. Electrochim Acta 26:1253–1256

    Article  Google Scholar 

  89. Hamani H, Douadi T, Daoud D, Al-Noaimi M, Rikkouh RA, Chafaa S (2017) 1-(4-Nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: weight loss, electrochemical, thermodynamic and quantum chemical studies. J Electroanal Chem 801:425–438

    Article  CAS  Google Scholar 

  90. Olen L, Riggs JR, Hurd RM (1967) Temperature coefficient of corrosion inhibition. Corrosion 23:252–260

    Article  Google Scholar 

  91. Liu J, Zheng T, Wang J, Jia G (2022) The inhibition performance of novel amino acid-based amphiprotic surfactants on aluminum alloys in sodium chloride solutions: experimental and theoretical studies. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2021.125622

    Article  Google Scholar 

  92. Olasunkanmi LO, Moloto BP, Obot IB, Ebenso EE (2018) Anticorrosion studies of some hydantoin derivatives for mild steel in 0.5 M HCl solution: experimental, quantum chemical, Monte Carlo simulations and QSAR studies. J Mol Liq 252:62–74

    Article  CAS  Google Scholar 

  93. Kouache A, Khelifa A, Boutoumi H, Moulay S, Feghoul A, Idir B, Aoudj S (2021) Experimental and theoretical studies of Inula viscosa extract as a novel eco-friendly corrosion inhibitor for carbon steel in 1 M HCl. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2021.195621

    Article  Google Scholar 

  94. Lukovits I, Kalman E, Zucchi F (2001) Corrosion inhibitors -correlation between electronic structure and efficiency. Corrosion 57:3–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Benhaddad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Copolymer and amphoteric surfactant show high corrosion inhibition performance of carbon steel in 3.5%NaCl solution.

• Both inhibitors are mixed-type ones, obeying the Langmuir adsorption isotherm.

• The synergistic effect is more pronounced by increasing the amount of surfactant.

• Theoretical studies are in good agreement with experimental results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djama, M., Benhaddad, L., Idir, B. et al. Synergistic corrosion inhibition effect of copolymer and an amphoteric surfactant on carbon steel in 3.5 NaCl solution: experimental and theoretical research. J Solid State Electrochem 27, 2139–2162 (2023). https://doi.org/10.1007/s10008-023-05456-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05456-3

Keywords

Navigation