Skip to main content
Log in

Single-source realization of Na-doped and carbon-coated LiMnPO4 nanocomposite for enhanced performance of Li-ion batteries

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiMnPO4 is of great interest as the promising cathode material in lithium-ion batteries for its low cost and good stability, but still suffers from limited electrochemical performance. In this work, Li1-xNaxMnPO4/C (LNMP/C) nanocomposite is prepared using polyacrylic acid sodium as a single source for simultaneous performing of Na+ doping and carbon coating. The as-prepared LNMP/C sample exhibits an olivine-type structure and uniform particle size distribution. The carbon layer (about 2.5 nm in thickness) is covered thoroughly on the surface of the sample and Na+ enters into the internal structure and occupies Li+ position. Compared with LiMnPO4/C (LMP/C) without Na doping, LNMP/C shows good electrochemical performance, including low electrochemical reaction resistance, high discharge capacity and better cycle stability and rate performance. The initial discharge capacity of LNMP/C is 157 mAh g−1 at 0.1C rate and the capacity retention is 96.81% after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Xu C, Puente-Santiago AR, Rodríguez-Padrón D, Muñoz Batista MJ, Ahsan MA, Noveron JC, Luque R (2021) Nature-inspired hierarchical materials for sensing and energy storage applications. Chem Soc Rev 50:4856–4871

    Article  CAS  PubMed  Google Scholar 

  2. Trano S, Corsini F, Pascuzzi G, Giove E, Fagiolari L, Amici J, Francia C, Turri S, Bodoardo S, Griffini G, Bella F (2022) Lignin as polymer electrolyte precursor for stable and sustainable potassium batteries. Chemsuschem 15:e202200294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alidoost M, Mangini A, Caldera F, Anceschi A, Amici J, Versaci D, Fagiolari L, Trotta F, Francia C, Bella F, Bodoardo S (2022) Micro-mesoporous carbons from cyclodextrin nanosponges enabling high-capacity silicon anodes and sulfur cathodes for lithiated Si-S batteries. Chem Eur J 28:e202104201

    Article  CAS  PubMed  Google Scholar 

  4. Su DC, Xiao YH, Liu YL, Xu SG, Fang SM, Cao SK, Wang XZ (2023) Surface-confined polymerization to construct binary Fe3N/Co–N–C encapsulated MXene composites for high-performance zinc-air battery. Carbon 201:269–277

    Article  CAS  Google Scholar 

  5. Zhai PF, He Wei, Zeng CY, Li LJ, Yang W (2023) Biomimetic plant-cell composite gel polymer electrolyte for boosting rate performance of lithium metal batteries. Chem Eng J 451:138414

  6. Manarin E, Corsini F, Trano S, Fagiolari L, Amici J, Francia C, Bodoardo S, Turri S, Bella F, Griffini G (2022) Cardanol-derived epoxy resins as biobased gel polymer electrolytes for potassium-ion conduction. ACS Appl Polym Mater 4:3855–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdah MAAM, Mokhtar M, Khoon LT, Sopian K, Dzulkurnain NA, Ahmad A, Sulaiman Y, Bella F, Su’ait MS (2021) Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene)/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Rep 7:8677–8687

    Article  Google Scholar 

  8. Fan ES, Li L, Wang ZP, Lin J, Huang YX, Yao Y, Chen RJ, Wu F (2020) Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev 120(14):7020–7063

    Article  CAS  PubMed  Google Scholar 

  9. Fujita T, Chen H, Wang KT, He CL, Wang YB, Dodbiba G, Wei YZ (2021) Reduction, reuse and recycle of spent Li-ion batteries for automobiles: a review. Int J Miner Metall Mater 28(2):179–192

    Article  CAS  Google Scholar 

  10. Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30(33):1800561

    Article  Google Scholar 

  11. Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138

    Article  CAS  Google Scholar 

  12. Pan FF, Wang WL (2012) Synthesis and characterization of core–shell F-doped LiFePO4/C composite for lithium-ion batteries. J Solid State Electrochem 16:1423–1427

    Article  CAS  Google Scholar 

  13. Nie ZX, Ouyang CY, Chen JZ, Zhong ZY, Du YL, Liu DS, Shi SQ, Lei MS (2010) First principles study of Jahn-Teller effects in LixMnPO4. Solid State Commun 150(1–2):40–44

    Article  CAS  Google Scholar 

  14. Wang Y, Wu C, Yang H, Duh J (2018) Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials. J Mater Chem A 6(22):10395–10403

    Article  CAS  Google Scholar 

  15. Ran L, Liu X, Tang Q, Zhu K, Tian J, Du J, Shan Z (2013) Grinding aid-assisted preparation of high-performance carbon-LiMnPO4. Electrochim Acta 114:14–20

    Article  CAS  Google Scholar 

  16. Ouyang CY, Wang DY, Shi SQ, Wang ZX, Li H, Huang XJ, Chen LQ (2006) First principles study on NaxLi1−xFePO4 as cathode material for rechargeable lithium batteries. Chin Phys Lett 23:61–64

    Article  CAS  Google Scholar 

  17. Yin XG, Huang KL, Liu SQ, Wang HY, Wang H (2010) Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J Power Sources 195:4308–4312

    Article  CAS  Google Scholar 

  18. Madram AR, Faraji M (2017) Site-dependent electrochemical performance of Na and K co-doped LiFePO4/C cathode material for lithium-ion batteries. New J Chem 41:12190–12197

    Article  CAS  Google Scholar 

  19. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10(8):2799–2805

    Article  CAS  PubMed  Google Scholar 

  20. Zhu YR, Zhang R, Deng L, Yi TF, Ye MF, Yao JH, Dai CS (2015) Lithium-ion insertion kinetics of Na-doped LiFePO4 as cathode materials for lithium-ion batteries. Metall Mater Trans E 2E:33–38

    Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (No. 22075035), Science and Technology Plan of Liaoning Province of China (2020JH2/10700008) and the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE-19–10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1206 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Liu, S., Liu, H. et al. Single-source realization of Na-doped and carbon-coated LiMnPO4 nanocomposite for enhanced performance of Li-ion batteries. J Solid State Electrochem 27, 1055–1060 (2023). https://doi.org/10.1007/s10008-022-05354-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05354-0

Keywords

Navigation