Skip to main content

Advertisement

Log in

Electrochemical investigations of the various electrolytes for high energy density metal oxide supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the asymmetric supercapacitor (ASC) devices with three different electrolytes including aqueous, organic, and gel polymer electrolytes have been fabricated to investigate and compare the potential window and the capacitive efficiency of the fabricated devices. The aqueous electrolyte includes potassium hydroxide (KOH, 6.0 M), the organic electrolyte is a solution of lithium hexafluorophosphate (LiPF6, 1.0 M in ethylene carbonate/dimethyl carbonate (EC/DMC)), and the gel polymer electrolyte includes porous poly(acrylonitrile-polyhedral oligomeric silsesquioxane) membrane (P(A-POS)) moistened in 1.0 M solution of LiPF6 in EC/DMC. The positive electrode was a cobalt oxide-based electrode, i.e., Co3O4 nanoribbons (NRCo3O4), and the negative electrode was the activated carbon (AC). The specific capacitance of the supercapacitor with aqueous electrolyte (A-ASC) at the current density of 2 A g−1 is 88.0 F g−1, which has a higher specific capacitance than that of the supercapacitor with organic electrolyte (O-ASC) and the supercapacitor with gel polymer electrolyte (G-ASC). The gel polymer electrolyte for NRCo3O4//AC device shows a wide potential window of 4 V and low charge transfer resistance of 11 Ω. The specific capacitance of NRCo3O4//AC device with gel polymer electrolyte was 54.34 F g−1 at 2 A g−1, which is higher than the specific capacitance of O-ASC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chebrolu VT, Balakrishnan B, Raman V, Cho I, Bak J-S, Prabakar K, Kim H-J (2020) Co-electrodeposition of NiCu(OH)2­@Ni-Cu-Se hierarchical nanoparticle structure for supercapacitor application with enhanced performance. Appl Surf Sci 506:145015. https://doi.org/10.1016/j.apsusc.2019.145015

    Article  CAS  Google Scholar 

  2. Zong Q, Liu C, Yang H, Zhang Q, Cao G (2021) Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today 38:101201. https://doi.org/10.1016/j.nantod.2021.101201

    Article  CAS  Google Scholar 

  3. Khakpour Z, Tavassoli M, Moradlou O (2020) Sol–gel approach for the growth of vertically aligned 3D-TiO2 nanorod arrays as an efficient photoanode for high-performance dye-sensitized solar cells. J Iran Chem Soc 17(4):881–891. https://doi.org/10.1007/s13738-019-01821-0

    Article  CAS  Google Scholar 

  4. Moradlou O, Sharifpour H (2020) Interconnected NiCo2S4- coated NiO nanosheet arrays as electrode materials for high-performance supercapacitors. J Energy Storage 32:101886. https://doi.org/10.1016/j.est.2020.101886

    Article  Google Scholar 

  5. Javed MS, Shah SSA, Hussain S, Tan S, Mai W (2020) Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor. J Chem Eng 382:122814. https://doi.org/10.1016/j.cej.2019.122814.

  6. Huang C, Zhu Q, Zhang W, Qi P, Xiao Q, Yu Y (2020) Facile preparation of W5O14 nanosheet arrays with large crystal channels as high-performance negative electrode for supercapacitor. Electrochim Acta 330:135209. https://doi.org/10.1016/j.electacta.2019.135209

    Article  CAS  Google Scholar 

  7. Fahimi Z, Moradlou O (2020) Fabrication of ZnO@C foam: a flexible free-standing electrode for energy storage devices. Mater Des 189:108525. https://doi.org/10.1016/j.matdes.2020.108525

    Article  CAS  Google Scholar 

  8. Zhao Z, Richardson GF, Meng Q, Zhu S, Kuan H-C, Ma J (2015) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27(4):042001. https://doi.org/10.1021/acsaem.1c01517

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Hu A, Meng C, Wu C, Yang S, Hong X (2020) Recent advance in Co3O4 and Co3O4-containing electrode materials for high-performance supercapacitors. Molecules 25(2):269. https://doi.org/10.3390/molecules25020269

    Article  CAS  PubMed Central  Google Scholar 

  10. Qorbani M, Chou T-C, Lee Y-H, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang C-H, Chen L-C, Chen K-H, Moshfegh AZ (2017) Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. Journal of Materials Chemistry A 5(24):12569–12577. https://doi.org/10.1039/C7TA00694B

    Article  CAS  Google Scholar 

  11. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418. https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  12. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1(10):3807–3835. https://doi.org/10.1039/C9NA00374F

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tiwari B, Joshi A, Munjal M, Kaur G, Sharma RK, Singh G (2021) Synergistic combination of N/P dual-doped activated carbon with redox-active electrolyte for high performance supercapacitors, J Phys Chem Solids 110449. https://doi.org/10.1016/j.jpcs.2021.110449

  14. Kasturi PR, Harivignesh R, Lee YS, Selvan RK (2020) Hydrothermally derived porous carbon and its improved electrochemical performance for supercapacitors using redox additive electrolytes. J Phys Chem Solids 143:109447. https://doi.org/10.1016/j.jpcs.2020.109447

    Article  CAS  Google Scholar 

  15. Li Q, Lu W, Li Z, Ning J, Zhong Y, Hu Y (2020) Hierarchical MoS2/NiCo2S4@ C urchin-like hollow microspheres for asymmetric supercapacitors. J Chem Eng 380:122544. https://doi.org/10.1016/j.cej.2019.122544

    Article  CAS  Google Scholar 

  16. Zuo H, Fu W, Fan R, Dastan D, Wang H, Shi Z (2020) Bilayer carbon nanowires/nickel cobalt hydroxides nanostructures for high-performance supercapacitors. Mater Lett 263:127217. https://doi.org/10.1016/j.matlet.2019.127217

    Article  CAS  Google Scholar 

  17. Leistenschneider D, Heß LH, Balducci A, Borchardt L (2020) Solid-state transformation of aqueous to organic electrolyte–enhancing the operating voltage window of ‘in situ electrolyte’supercapacitors. Sustain Energy Fuels 4(5):2438–2447. https://doi.org/10.1039/D0SE00180E

    Article  CAS  Google Scholar 

  18. Wang X, Xu Q, Cheng J, Hu G, Xie X, Peng C, Yu X, Shen H, Zhao ZK, Xie H (2020) Bio-refining corn stover into microbial lipid and advanced energy material using ionic liquid-based organic electrolyte. Ind Crops Prod 145:112137. https://doi.org/10.1016/j.indcrop.2020.112137

    Article  CAS  Google Scholar 

  19. Miao L, Duan H, Wang Z, Lv Y, Xiong W, Zhu D, Gan L, Li L, Liu M (2020) Improving the pore-ion size compatibility between poly (ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. J Chem Eng 382:122945. https://doi.org/10.1016/j.cej.2019.122945

    Article  CAS  Google Scholar 

  20. Fan L-Q, Tu Q-M, Geng C-L, Huang J-L, Gu Y, Lin J-M, Huang Y-F, Wu J-H (2020) High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte. Electrochim Acta 331:135425. https://doi.org/10.1016/j.electacta.2019.135425

    Article  CAS  Google Scholar 

  21. Yan C, Jin M, Pan X, Ma L, Ma X (2020) A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application. RSC Adv 10(16):9299–9308. https://doi.org/10.1039/C9RA10701K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tripathi M, Bobade SM, Kumar A (2021) Nanocomposite polymer gel with dispersed alumina as an efficient electrolyte for application in supercapacitors. J Phys Chem Solids 152:109944. https://doi.org/10.1016/j.jpcs.2021.109944

    Article  CAS  Google Scholar 

  23. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion, Hand Clean Energy Syst 1–25. https://doi.org/10.1002/9781118991978.hces112

  24. Moradlou O, Ansarinejad H, Hosseinzadeh M, Kazemi H (2018) High-performance solid state asymmetric supercapacitor based on electrochemically decorated 3D network-like Co3O4 architecture on NiO nanoworms. J Alloys Compd 755:231–241. https://doi.org/10.1016/j.jallcom.2018.04.334

    Article  CAS  Google Scholar 

  25. Ghasemi M, Fahimi Z, Moradlou O, Sovizi MR (2021) Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window. J Taiwan Inst Chem Eng 118:223–231. https://doi.org/10.1016/j.jtice.2020.12.020

    Article  CAS  Google Scholar 

  26. Fahimi Z, Moradlou O, Sabbah A, Chen K-H, Chen L-C, Qorbani M (2022) Co3V2O8 hollow spheres with mesoporous walls as high-capacitance electrode for hybrid supercapacitor device. J Chem Eng 436:135225. https://doi.org/10.1016/j.cej.2022.135225

    Article  CAS  Google Scholar 

  27. Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D (2020) Mesoporous materials for electrochemical energy storage and conversion. Adv Energy Mater 10(38):2002152. https://doi.org/10.1002/aenm.202002152

    Article  CAS  Google Scholar 

  28. Yang F, Xu K, Hu J (2019) Hierarchical multicomponent electrode with NiMoO4 nanosheets coated on Co3O4 nanowire arrays for enhanced electrochemical properties. J Alloys Compd 781:1127–1131. https://doi.org/10.1016/j.jallcom.2018.12.166

    Article  CAS  Google Scholar 

  29. Ouyang K, Guo G, Liu Y, Lin S, Wei M (2019) Facile synthesis of heterogeneous Co3O4-nanowires/vertical-graphene-nanosheets on Ni foam for high performance supercapacitors. Mater Lett. https://doi.org/10.1016/j.matlet.2019.05.062

    Article  Google Scholar 

  30. Xiaoshuang W, Nan Z, Xiangcheng C, Jingyan L, Feng L, Ling C, Guangjie S (2019) Facile precursor conversion synthesis of hollow coral-shaped Co3O4 nanostructures for high-performance supercapacitors, Colloids Surf. A Physicochem Eng Asp Colloid Surf A. https://doi.org/10.1016/j.colsurfa.2019.03.016

  31. Ma Y, Li L, Gao G, Yang X, You J, Yang P (2016) Ionic conductivity enhancement in gel polymer electrolyte membrane with N-methyl-N-butyl-piperidine-bis (trifluoromethylsulfonyl) imide ionic liquid for lithium ion battery, Colloids Surf. A Physicochem Eng Asp Colloid Surf A 502:130–138. https://doi.org/10.1016/j.colsurfa.2016.05.011

  32. Li L, Wang F, Li J, Yang X, You J (2017) Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrog Energy 42(17):12087–12093. https://doi.org/10.1016/j.ijhydene.2017.02.085

    Article  CAS  Google Scholar 

  33. Tsao C-H, Kuo P-L (2015) Poly (dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J Membr Sci 489:36–42. https://doi.org/10.1016/j.memsci.2015.03.087

    Article  CAS  Google Scholar 

  34. Liu B, Huang Y, Cao H, Zhao L, Huang Y, Song A, Lin Y, Li X, Wang M (2018) A novel porous gel polymer electrolyte based on poly (acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149. https://doi.org/10.1016/j.memsci.2017.09.077

    Article  CAS  Google Scholar 

  35. Liu Z, Zhang H, Yang Q, Chen Y (2018) Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim Acta 287:149–157. https://doi.org/10.1016/j.electacta.2018.04.212

    Article  CAS  Google Scholar 

  36. Shabangoli Y, Rahmanifar MS, Noori A, El-Kady MF, Kaner RB, Mousavi MF (2019) Nile blue functionalized graphene aerogel as a pseudocapacitive negative electrode material across the full pH range. ACS Nano 13(11):12567–12576. https://doi.org/10.1021/acsnano.9b03351

    Article  CAS  PubMed  Google Scholar 

  37. Wu B, Qian H, Nie Z, Luo Z, Wu Z, Liu P, He H, Wu J, Chen S, Zhang F (2020) Ni3S2 nanorods growing directly on Ni foam for all-solid-state asymmetric supercapacitor and efficient overall water splitting. J Energy Chem 46:178–186. https://doi.org/10.1016/j.jechem.2019.11.011

    Article  Google Scholar 

  38. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252

    Article  CAS  PubMed  Google Scholar 

  39. Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? ACS Publications. https://doi.org/10.1021/acsnano.8b01914

    Article  Google Scholar 

  40. Zhu J, Xu Y, Wang J, Lin J, Sun X, Mao S (2015) The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Phys Chem Chem Phys 17(43):28666–28673. https://doi.org/10.1039/C5CP04080A

    Article  CAS  PubMed  Google Scholar 

  41. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F (2020) Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage 27:101072. https://doi.org/10.1016/j.est.2019.101072

    Article  Google Scholar 

  42. Fahimi Z, Moradlou O (2022) High-performance solid-state asymmetric supercapacitor based on Co3V2O8/carbon nanotube nanocomposite and gel polymer electrolyte. J Energy Storage 50:104697. https://doi.org/10.1016/j.est.2022.104697

    Article  Google Scholar 

  43. Javed MS, Shah SSA, Hussain S, Tan S, Mai W (2020) Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor. J Chem Eng 382:122814. https://doi.org/10.1016/j.cej.2019.122814.

  44. Sekar K, Raji G, Tong L, Zhu Y, Liu S, Xing R (2020) Boosting the electrochemical performance of MoS2 nanospheres-N-doped-GQDs-rGO three-dimensional nanostructure for energy storage and conversion applications. Appl Surf Sci 504:144441. https://doi.org/10.1016/j.apsusc.2019.144441

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Iran National Science Foundation (Grant no. 98016196). The Research Council of Alzahra University provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omran Moradlou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahimi, Z., Ghasemi, M., Alavijeh, F.K. et al. Electrochemical investigations of the various electrolytes for high energy density metal oxide supercapacitor. J Solid State Electrochem 26, 2389–2399 (2022). https://doi.org/10.1007/s10008-022-05260-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05260-5

Keywords

Navigation