Skip to main content

Advertisement

Log in

Manganese-doped zinc sulfide binary nanostructures as binder-free electrode materials for supercapattery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Binary metal sulfide–based electrode materials with distinct nanoarchitecture, improved conductivities, and fascinating mechanical stabilities are required for the development of nearly all energy storage devices with promising energy density, power density, and stability. Herein, binder-free electrodes were fabricated by direct growth of zinc sulfide–doped manganese (ZnS@Mn) on nickel foam (NF) using hydrothermal method. Different hydrothermal heating times and temperatures were employed to develop the best optimized electrodes for the supercapattery. The synthesized ZnS@Mn nanostructures were characterized through X-ray diffraction structural analysis and morphology studies were conducted using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical studies reveal that 6 h of heating at temperature of 150 °C had achieved significantly improved specific capacitance of 2913 Fg−1 and 1722 Fg−1 at 1 Ag−1 and 10 Ag−1, respectively, while exhibiting an excellent rate capability of 59% at 10 Ag−1. A supercapattery was assembled using the best optimized electrode results in maximum specific capacitance of 263 Fg−1 with an energy density and power density of 9.14 Wh kg−1 and 249.95 W kg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. The Energy Crisis. https://www.resilience.org/the-energy-crisis/. Accessed 10 Nov 2020

  2. Pros and Cons of Fossil Fuels. https://www.conserve-energy-future.com/pros-and-cons-of-fossil-fuels.php. Accessed 10 Nov 2020

  3. Pollet BG, Staffell I, Shang JL, Molkov V (2014) 22 - Fuel-cell (hydrogen) electric hybrid vehicles. In: Folkson R (ed) Alternative fuels and advanced vehicle technologies for improved environmental performance. Woodhead Publishing 685–735. https://doi.org/10.1533/9780857097422.3.685

  4. Chen GZ (2017) Supercapacitor and supercapattery as emerging electrochemical energy stores. Int Mater Rev 62(4):173–202. https://doi.org/10.1080/09506608.2016.1240914

    Article  CAS  Google Scholar 

  5. Wang Z, Tammela P, Strømme M, Nyholm L (2017) Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater 7(18):1700130. https://doi.org/10.1002/aenm.201700130

    Article  CAS  Google Scholar 

  6. Mohamed SG, Hussain I, Sayed MS, Shim J-J (2020) One-step development of octahedron-like CuCo2O4@Carbon fibers for high-performance supercapacitors electrodes. J Alloy Compd 842:155639. https://doi.org/10.1016/j.jallcom.2020.155639

    Article  CAS  Google Scholar 

  7. Bashir S, Hina M, Ramesh S, Ramesh K (2021) Flexible and self-healable poly (N, N-dimethylacrylamide) hydrogels for supercapacitor prototype. Colloids Surf, A 617:126377

    Article  CAS  Google Scholar 

  8. Bashir S, Hina M, Iqbal J, Rajpar A, Mujtaba M, Alghamdi N, Wageh S, Ramesh K, Ramesh S (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers 12(11):2702

    Article  CAS  Google Scholar 

  9. Ramlee F, Farhana N, Bashir S, Saidi NM, Omar FS, Ramesh S, Ramesh K (2021) Electrical property enhancement of poly (vinyl alcohol-co-ethylene)–based gel polymer electrolyte incorporated with triglyme for electric double-layer capacitors (EDLCs). Ionics 27(1):361–373

    Article  CAS  Google Scholar 

  10. Akinwolemiwa B, Peng C, Chen GZ (2015) Redox electrolytes in supercapacitors. J Electrochem Soc 162(5):A5054–A5059. https://doi.org/10.1149/2.0111505jes

    Article  CAS  Google Scholar 

  11. Iqbal J, Numan A, Jafer R, Bashir S, Jilani A, Mohammad S, Khalid M, Ramesh K, Ramesh S (2020) Ternary nanocomposite of cobalt oxide nanograins and silver nanoparticles grown on reduced graphene oxide conducting platform for high-performance supercapattery electrode material. J Alloy Compd 821:153452. https://doi.org/10.1016/j.jallcom.2019.153452

    Article  CAS  Google Scholar 

  12. Yu L, Chen GZ (2016) High energy supercapattery with an ionic liquid solution of LiClO4. Faraday Disc 190:231–240. https://doi.org/10.1039/C5FD00232J

    Article  CAS  PubMed  Google Scholar 

  13. Song Y, Liu T-Y, Xu X-X, Feng D-Y, Li Y, Liu X-X (2015) Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv Func Mater 25(29):4626–4632. https://doi.org/10.1002/adfm.201501709

    Article  CAS  Google Scholar 

  14. Xia C, Chen W, Wang X, Hedhili MN, Wei N, Alshareef HN (2015) Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications. Adv Energy Mater 5(8):1401805. https://doi.org/10.1002/aenm.201401805

    Article  CAS  Google Scholar 

  15. Rajesh M, Raj CJ, Manikandan R, Kim BC, Park SY, Yu KH (2017) A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes. Mater Today Ener 6:96–104. https://doi.org/10.1016/j.mtener.2017.09.003

    Article  Google Scholar 

  16. Bashir S, Hasan K, Hina M, Soomro RA, Mujtaba M, Ramesh S, Ramesh K, Duraisamy N, Manikam R (2021) Conducting polymer/graphene hydrogel electrodes based aqueous smart supercapacitors: a review and future prospects. J Electroanal Chem 898:115626

    Article  CAS  Google Scholar 

  17. Cheng F, He C, Shu D, Chen H, Zhang J, Tang S, Finlow DE (2011) Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater Chem Phys 131(1):268–273. https://doi.org/10.1016/j.matchemphys.2011.09.040

    Article  CAS  Google Scholar 

  18. Tang S, Cheng Q, Zhao J, Liang J, Liu C, Lan Q, Cao Y-C, Liu J (2017) Preparation of titanium nitride nanomaterials for electrode and application in energy storage. Results Phys 7:1198–1201. https://doi.org/10.1016/j.rinp.2017.03.006

    Article  Google Scholar 

  19. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent Advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180. https://doi.org/10.1002/adma.201202146

    Article  CAS  PubMed  Google Scholar 

  20. Tanwar S, Arya A, Gaur A, Sharma A (2021) Transition metal dichalcogenide (tmds) electrodes for supercapacitors: a comprehensive review. J Phys: Conden Matt

  21. Zhang L, Huang TJ, Gong H (2017) Remarkable improvement in supercapacitor performance by sulfur introduction during a one-step synthesis of nickel hydroxide. Phys Chem Chem Phys 19(16):10462–10469. https://doi.org/10.1039/C7CP01234A

    Article  CAS  PubMed  Google Scholar 

  22. Lee D, Lee HW, Mathur S, Kim KH (2021) Influence of cycling stability on structure and properties of MnCo2S4 nanocomposite for high-performance supercapacitors. J Alloy Compd 868:158850. https://doi.org/10.1016/j.jallcom.2021.158850

    Article  CAS  Google Scholar 

  23. Veeramani V, Madhu R, Chen S-M, Sivakumar M (2016) Flower-like nickel–cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain Chem Eng 4(9):5013–5020. https://doi.org/10.1021/acssuschemeng.6b01391

    Article  CAS  Google Scholar 

  24. Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590. https://doi.org/10.1016/j.jpowsour.2014.09.144

    Article  CAS  Google Scholar 

  25. Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6(17):9889–9924. https://doi.org/10.1039/C4NR03057E

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19):8879–8883. https://doi.org/10.1039/C3NR02958A

    Article  CAS  PubMed  Google Scholar 

  27. Yu XY, Lou XW (2018) Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater 8(3):1701592. https://doi.org/10.1002/aenm.201701592

    Article  CAS  Google Scholar 

  28. Huang B, Wang H, Liang S, Qin H, Li Y, Luo Z, Zhao C, Xie L, Chen L (2020) Two-dimensional porous cobalt–nickel tungstate thin sheets for high performance supercapattery. Ener Stor Mater 32:105–114

    Article  Google Scholar 

  29. Iqbal J, Numan A, Omaish Ansari M, Jafer R, Jagadish PR, Bashir S, Hasan P, Bilgrami AL, Mohamad S, Ramesh K (2020) Cobalt oxide nanograins and silver nanoparticles decorated fibrous polyaniline nanocomposite as battery-type electrode for high performance supercapattery. Polymers 12(12):2816

    Article  CAS  Google Scholar 

  30. Iqbal J, Numan A, Rafique S, Jafer R, Mohamad S, Ramesh K, Ramesh S (2018) High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim Acta 278:72–82. https://doi.org/10.1016/j.electacta.2018.05.040

    Article  CAS  Google Scholar 

  31. Chandrakar RK, Baghel RN, Chandra VK, Chandra BP (2015) Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices Microstruct 86:256–269. https://doi.org/10.1016/j.spmi.2015.07.043

    Article  CAS  Google Scholar 

  32. Tanwar S, Arya A, Singh N, Yadav BC, Kumar V, Rai A, Sharma A (2021) High efficient carbon coated TiO2 electrode for ultra-capacitor applications. J Phys D Appl Phys 55(5):055501

    Article  Google Scholar 

  33. Pandey L, Sarkar S, Arya A, Sharma A, Panwar A, Kotnala R, Gaur A (2021) Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors. Biomass Convers. Biorefin 1–10

  34. Hussain I, Mohapatra D, Dhakal G, Lamiel C, Mohamed SG, Sayed MS, Shim J-J (2020) Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications. J Energy Stor 32:101767. https://doi.org/10.1016/j.est.2020.101767

    Article  Google Scholar 

  35. Chen T, Tang Y, Qiao Y, Liu Z, Guo W, Song J, Mu S, Yu S, Zhao Y, Gao F (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rep 6(1):23289. https://doi.org/10.1038/srep23289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 7(2):312–317. https://doi.org/10.1021/nl062336y

    Article  CAS  PubMed  Google Scholar 

  37. Arul NS, Cavalcante LS, In Han J (2018) Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J Solid State Electrochem 22(1):303–313. https://doi.org/10.1007/s10008-017-3782-1

    Article  CAS  Google Scholar 

  38. Tao F, Zhao Y-Q, Zhang G-Q, Li H-L (2007) Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun 9(6):1282–1287. https://doi.org/10.1016/j.elecom.2006.11.022

    Article  CAS  Google Scholar 

  39. Yang Q, Hou Z, Huang T (2015) Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications. J Appl Polym Sci 132 (11). https://doi.org/10.1002/app.41615

  40. Liu Y, Wang Z, Zhong Y, Tade M, Zhou W, Shao Z (2017) Molecular design of mesoporous NiCo2O4 and NiCo2S4 with sub-micrometer-polyhedron architectures for efficient pseudocapacitive energy storage. Adv Func Mater 27(28):1701229. https://doi.org/10.1002/adfm.201701229

    Article  CAS  Google Scholar 

  41. Kang C, Omar FS, Gunalan S, Kasi R, T subramaniam R (2020) Coral-like structured nickel sulfide-cobalt sulfide binder-free electrode for supercapattery. Ionics. https://doi.org/10.1007/s11581-020-03443-6

    Article  Google Scholar 

  42. Bahaa A, Balamurugan J, Kim NH, Lee JH (2019) Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. J Mater Chem A 7(14):8620–8632. https://doi.org/10.1039/C9TA00265K

    Article  CAS  Google Scholar 

  43. Prabhakaran V, Mehdi BL, Ditto JJ, Engelhard MH, Wang B, Gunaratne KDD, Johnson DC, Browning ND, Johnson GE, Laskin J (2016) Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing. Nat Commun 7(1):11399. https://doi.org/10.1038/ncomms11399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naresh B, Punnoose D, Rao SS, Subramanian A, Raja Ramesh B, Kim H-J (2018) Hydrothermal synthesis and pseudocapacitive properties of morphology-tuned nickel sulfide (NiS) nanostructures. New J Chem 42(4):2733–2742. https://doi.org/10.1039/C7NJ05054B

    Article  CAS  Google Scholar 

  45. Tang Z, Tang C-h, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Func Mater 22(6):1272–1278. https://doi.org/10.1002/adfm.201102796

    Article  CAS  Google Scholar 

  46. Xu R, Guo F, Cui X, Zhang L, Wang K, Wei J (2015) High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone. J Mate Chem A 3(44):22353–22360. https://doi.org/10.1039/C5TA06165B

    Article  CAS  Google Scholar 

  47. Nadiah NS, Omar FS, Numan A, Mahipal YK, Ramesh S, Ramesh K (2017) Influence of acrylic acid on ethylene carbonate/dimethyl carbonate based liquid electrolyte and its supercapacitor application. Int J Hydrogen Energy 42(52):30683–30690. https://doi.org/10.1016/j.ijhydene.2017.10.140

    Article  CAS  Google Scholar 

  48. Surender G, Omar FS, Bashir S, Pershaanaa M, Ramesh S, Ramesh K (2021) Growth of nanostructured cobalt sulfide-based nanocomposite as faradaic binder-free electrode for supercapattery. J Energy Stor 39:102599

    Article  Google Scholar 

  49. Lu W, Xie C, Zhang H, Li X (2018) Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23):3996–4006

    Article  CAS  Google Scholar 

  50. Li Y, Luo Z, Liang S, Qin H, Zhao X, Chen L, Wang H, Chen S (2021) Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries. J Mater Sci Technol 89:199–208

    Article  CAS  Google Scholar 

  51. Iqbal MZ, Khan J (2021) Optimization of cobalt-manganese binary sulfide for high performance supercapattery devices. Electrochim Acta 368:137529

    Article  CAS  Google Scholar 

  52. Shahi S, Saeednia S, Iranmanesh P, Hatefi M (2020) Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles. Luminescence. https://doi.org/10.1002/bio.3933

    Article  PubMed  Google Scholar 

  53. Himasree P, Durga IK, Krishna TNV, Rao SS, Muralee Gopi CVV, Revathi S, Prabakar K, Kim H-J (2019) One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material. Electrochim Acta 305:467–473. https://doi.org/10.1016/j.electacta.2019.03.041

    Article  CAS  Google Scholar 

  54. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, Kumar P, Jafer R, Bashir S, Rajpar A (2020) Hydrothermally assisted synthesis of porous polyaniline@ carbon nanotubes–manganese dioxide ternary composite for potential application in supercapattery. Polymers 12(12):2918

    Article  CAS  Google Scholar 

  55. Wang K, Wang Z, Wang S, Chu Y, Xi R, Zhang X, Wu H (2019) Layered CuI-MOFs containing [Mo8O26] 4− clusters as supercapacitor electrode materials. Chem Eng J 367:239–248

    Article  CAS  Google Scholar 

  56. Krishnan S, Gupta AK, Singh MK, Guha N, Rai DK (2022) Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability. Chem Eng J 435:135042

    Article  CAS  Google Scholar 

  57. Haider SS, Iqbal MZ, Zakar S, Afzal AM, Yaqoob K, Aftab S (2021) Superior performance of electrodeposited CoMnS as novel electrode material for supercapattery devices. J Energy Stor 39:102608

    Article  Google Scholar 

  58. Javed MS, Najam T, Sajjad M, Shah SSA, Hussain I, Idrees M, Imran M, Assiri MA, Siyal SH (2021) Design and fabrication of highly porous 2D bimetallic sulfide ZnS/FeS composite nanosheets as an advanced negative electrode material for supercapacitors. Energy Fuels 35(18):15185–15191

    Article  CAS  Google Scholar 

  59. Li H, Li Z, Sun M, Wu Z, Shen W, Fu YQ (2019) Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochim Acta 319:716–726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A special thank to ECLIMO SDN BHD.

Funding

This work is financially supported by Technology Development Fund 1 (TeD1) from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia (MOSTI002-2021TED1) and Collaborative Research in Engineering, Science & Technology Center (CREST) (PV027-2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Material preparation and analysis were conducted by Siti Nasuha and M. Pershaanaa. First draft was written by Siti Nasuha and M. Pershaanaa and Shahid Bashir assisted in material synthesis and analysis and edited the first draft of manuscript. K. Ramesh and S. Ramesh supervised and reviewed the manuscript.

Corresponding author

Correspondence to S. Ramesh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasuha, S., Pershaanaa, M., Bashir, S. et al. Manganese-doped zinc sulfide binary nanostructures as binder-free electrode materials for supercapattery. J Solid State Electrochem 26, 1733–1746 (2022). https://doi.org/10.1007/s10008-022-05218-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05218-7

Keywords

Navigation