Skip to main content

Advertisement

Log in

Effects of the composition of active carbon electrodes on the impedance performance of the AC/AC supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Considerable diversity in the preparation methodology of active electrode materials for carbon supercapacitors makes direct comparison of the results obtained by different groups difficult. The electrode compositions usually included a variety of additives, such as the different forms of binders and/or conductive additives. All additives differ in physico-chemical properties, which affect the supercapacitive properties of electrodes in a different manner. In this study, we aimed to extend accumulated knowledge of the effect of active electrode content by performing the electrochemical characterization of a series of in-house-prepared carbon–carbon supercapacitors, which differ in compositions of active electrode materials and their thicknesses. The main focus was to investigate the frequency responses of the assembled devices and describe their behavior with the appropriate equivalent electric circuits to get a deeper understanding of the charge storage in the carbon electrodes. Assembled supercapacitors were subjected to external pressure, and the influence on cell performance was investigated. Results revealed how the applied variations influenced the equivalent serial resistance and capacitance, which is crucial in the process of supercapacitor assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  2. Naoi K, Simon P (2008) New materials and new confgurations for advanced electrochemical capacitors. Electrochem Soc Interface 17:34–37. https://doi.org/10.1149/2.f04081if

    Article  CAS  Google Scholar 

  3. Salanne M, Rotenberg B, Naoi K et al (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070. https://doi.org/10.1038/nenergy.2016.70

    Article  CAS  Google Scholar 

  4. Zhang Y, Ru Y, Gao HL et al (2019) Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications. J Electrochem Sci Eng 9:243–253. https://doi.org/10.5599/jese.690

    Article  CAS  Google Scholar 

  5. Yu X, Li B (2019) In-situ synthesis of mesoporous carbon/iron sulfide nanocomposite for supercapacitors. J Electrochem Sci Eng 9:55–62. https://doi.org/10.5599/jese.572

    Article  CAS  Google Scholar 

  6. Yadav M (2020) Metal oxides nanostructure-based electrode materials for supercapacitor application. J Nanoparticle Res 22. https://doi.org/10.1007/s11051-020-05103-2

  7. Liu R, Zhou A, Zhang X et al (2021) Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem Eng J 412:128611. https://doi.org/10.1016/j.cej.2021.128611

  8. Naskar P, Maiti A, Chakraborty P et al (2021) Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. J Mater Chem A 9:1970–2017. https://doi.org/10.1039/D0TA09655E

    Article  CAS  Google Scholar 

  9. Holze R (2020) Composites and copolymers containing redox-active molecules and intrinsically conducting polymers as active masses for supercapacitor electrodes—an introduction. Polymers 12:1835. https://doi.org/10.3390/polym12081835

    Article  CAS  PubMed Central  Google Scholar 

  10. Kong J, Yue Q, Wang B et al (2013) Short communication. J Anal Appl Pyrolysis 104:710–713. https://doi.org/10.1016/j.jaap.2013.05.024

    Article  CAS  Google Scholar 

  11. Lee H-M, Kim TA H-G, An K-H, Śliwak A (2014) Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation. Carbon Lett 15:71–76.https://doi.org/10.5714/CL.2014.15.1.071

  12. Roh JS (2003) Microstructural changes during activation process of isotopic carbon fibers using CO2 Gas(I)-XRD Study. Korean J Mater Res 13:742–748. https://doi.org/10.3740/MRSK.2003.13.11.742

    Article  CAS  Google Scholar 

  13. Fu K, Yue Q, Gao B et al (2013) Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem Eng J 228:1074–1082. https://doi.org/10.1016/j.cej.2013.05.028

  14. Bang JH, Lee HM, An KH, Kim BJ (2017) A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors. Appl Surf Sci 415:61–66. https://doi.org/10.1016/j.apsusc.2017.01.007

    Article  CAS  Google Scholar 

  15. Ruiz V, Blanco C, Granda M et al (2007) Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. J Appl Electrochem 37:717–721. https://doi.org/10.1007/s10800-007-9305-5

    Article  CAS  Google Scholar 

  16. Li Y, Pu Z, Sun Q, Pan N (2021) A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. J Energy Chem 60:572–590. https://doi.org/10.1016/j.jechem.2021.01.017

  17. Rajaputra SS, Pennada N, Yerramilli A, Kummara NM (2021) Graphene based sulfonated polyvinyl alcohol hydrogel nanocomposite for flexible supercapacitors. J Electrochem Sci Eng 11:197–207. https://doi.org/10.5599/JESE.1031

    Article  Google Scholar 

  18. Pang Z, Li G, Xiong X et al (2021) Molten salt synthesis of porous carbon and its application in supercapacitors: a review. J Energy Chem 61:622–640. https://doi.org/10.1016/j.jechem.2021.02.020

  19. Wen Y, Kok MDR, Tafoya JPV et al (2021) Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: a review. J Energy Chem 59:492–529. https://doi.org/10.1016/j.jechem.2020.11.014

  20. Sačer D, Spajić I, Kraljić Roković M, Mandić Z (2018) New insights into chemical and electrochemical functionalization of graphene oxide electrodes by o-phenylenediamine and their potential applications. J Mater Sci 53:15285–15297. https://doi.org/10.1007/s10853-018-2693-6

    Article  CAS  Google Scholar 

  21. Lee SJ, Theerthagiri J, Nithyadharseni P et al (2021) Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sustain Energy Rev 143:110849. https://doi.org/10.1016/j.rser.2021.110849

  22. Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718. https://doi.org/10.1016/j.jpowsour.2005.05.055

    Article  CAS  Google Scholar 

  23. Chmiola J, Yushin G, Gogotsi Y et al (2006) Anomalous increase in carbon at pore sizes less than 1 nanometer. Science 313:1760–1763. https://doi.org/10.1126/science.1132195

    Article  CAS  PubMed  Google Scholar 

  24. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507. https://doi.org/10.1016/j.carbon.2006.05.022

    Article  CAS  Google Scholar 

  25. Mysyk R, Raymundo-Piñero E, Pernak J, Béguin F (2009) Confinement of symmetric tetraalkylammonium ions in nanoporous carbon electrodes of electric double-layer capacitors. J Phys Chem C 113:13443–13449. https://doi.org/10.1021/jp901539h

    Article  CAS  Google Scholar 

  26. Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A et al (2003) Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon 41:1765–1775. https://doi.org/10.1016/S0008-6223(03)00141-6

  27. Kim I-T, Egashira M, Yoshimoto N, Morita M (2011) On the electric double-layer structure at carbon electrode/organic electrolyte solution interface analyzed by ac impedance and electrochemical quartz-crystal microbalance responses. Electrochim Acta 56:7319–7326. https://doi.org/10.1016/j.electacta.2011.06.044

    Article  CAS  Google Scholar 

  28. Ohta T, Kim IT, Egashira M et al (2012) Effects of electrolyte composition on the electrochemical activation of alkali-treated soft carbon as an electric double-layer capacitor electrode. J Power Sources 198:408–415. https://doi.org/10.1016/j.jpowsour.2011.10.006

    Article  CAS  Google Scholar 

  29. Vix-Guterl C, Frackowiak E, Jurewicz K et al (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43:1293–1302. https://doi.org/10.1016/j.carbon.2004.12.028

    Article  CAS  Google Scholar 

  30. Chmiola J, Largeot C, Taberna P-L et al (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chemie Int Ed 47:3392–3395. https://doi.org/10.1002/anie.200704894

  31. Decaux C, Matei Ghimbeu C, Dahbi M et al (2014) Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. J Power Sources 263:130–140. https://doi.org/10.1016/j.jpowsour.2014.04.024

  32. Mecklenfeld A, Raabe G (2020) GAFF/IPolQ-Mod+LJ-Fit: Optimized force field parameters for solvation free energy predictions. ADMET DMPK 8:274–296. https://doi.org/10.5599/admet.837

    Article  Google Scholar 

  33. Dobrota AS, Pašti IA (2020) Chemisorption as the essential step in electrochemical energy conversion. J Electrochem Sci Eng 10:141–159. https://doi.org/10.5599/jese.742

    Article  CAS  Google Scholar 

  34. Tsay KC, Zhang L, Zhang J (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436. https://doi.org/10.1016/j.electacta.2011.11.087

    Article  CAS  Google Scholar 

  35. Abbas Q, Pajak D, Frąckowiak E, Béguin F (2014) Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochim Acta 140:132–138. https://doi.org/10.1016/jelectacta2014.04.096

  36. Daraghmeh A, Hussain S, Servera L et al (2017) Impact of binder concentration and pressure on performance of symmetric CNFs based supercapacitors. Electrochim Acta 245:531–538. https://doi.org/10.1016/j.electacta.2017.05.186

    Article  CAS  Google Scholar 

  37. MA, Paul A (2017) Importance of electrode preparation methodologies in supercapacitor applications. ACS Omega 2:8039–8050. https://doi.org/10.1021/acsomega.7b01275

    Article  CAS  Google Scholar 

  38. Tran HY, Wohlfahrt-Mehrens M, Dsoke S (2017) Influence of the binder nature on the performance and cycle life of activated carbon electrodes in electrolytes containing Li-salt. J Power Sources 342:301–312. https://doi.org/10.1016/j.jpowsour.2016.12.056

    Article  CAS  Google Scholar 

  39. Varzi A, Passerini S (2015) Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder. J Power Sources 300:216–222. https://doi.org/10.1016/j.jpowsour.2015.09.065

    Article  CAS  Google Scholar 

  40. Varzi A, Raccichini R, Marinaro M et al (2016) Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors’ electrodes. J Power Sources 326:672–679. https://doi.org/10.1016/j.jpowsour.2016.03.072

  41. Lufrano F, Staiti P, Minutoli M (2004) Influence of Nafion content in electrodes on performance of carbon supercapacitors. J Electrochem Soc 151:A64. https://doi.org/10.1149/1.1626670

    Article  CAS  Google Scholar 

  42. Yamagata M, Ikebe S, Soeda K, Ishikawa M (2013) Ultrahigh-performance nonaqueous electric double-layer capacitors using an activated carbon composite electrode with alginate. RSC Adv 3:1037–1040. https://doi.org/10.1039/C2RA22188H

    Article  CAS  Google Scholar 

  43. Sopčić S, Antonić D, Mandić Z et al (2018) Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells. J Electrochem Sci Eng 8:183–195. https://doi.org/10.5599/jese.536

    Article  CAS  Google Scholar 

  44. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

  45. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292. https://doi.org/10.1149/1.1543948

    Article  CAS  Google Scholar 

  46. De Levie R (1967) Electrochemical response of porous and rough electrodes. Adv Electrochem Electrochem Eng 6:329–397

    Google Scholar 

  47. Pohlmann S, Lobato B, Centeno TA, Balducci A (2013) The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors. Phys Chem Chem Phys 15:17287–17294. https://doi.org/10.1039/C3CP52909F

    Article  CAS  PubMed  Google Scholar 

  48. Petrić V, Mandić Z (2021) On the need for simultaneous electrochemical testing of positive and negative electrodes in carbon supercapacitors. Electrochim Acta 384:138372. https://doi.org/10.1016/j.electacta.2021.138372

  49. Balducci A (2016) Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. J Power Sources 326:534–540. https://doi.org/10.1016/j.jpowsour.2016.05.029

    Article  CAS  Google Scholar 

  50. Pal B, Yang S, Ramesh S et al (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1:3807–3835. https://doi.org/10.1039/c9na00374f

    Article  Google Scholar 

  51. Han J, Yoshimoto N, Todorov YM et al (2018) Characteristics of the electric double-layer capacitors using organic electrolyte solutions containing different alkylammonium cations. Electrochim Acta 281:510–516. https://doi.org/10.1016/j.electacta.2018.06.012

    Article  CAS  Google Scholar 

  52. Koh AR, Hwang B, Chul Roh K, Kim K (2014) The effect of the ionic size of small quaternary ammonium BF4 salts on electrochemical double layer capacitors. Phys Chem Chem Phys 16:15146–15151. https://doi.org/10.1039/c4cp00949e

    Article  CAS  PubMed  Google Scholar 

  53. Arulepp M, Permann L, Leis J et al (2004) Influence of the solvent properties on the characteristics of a double layer capacitor. J Power Sources 133:320–328. https://doi.org/10.1016/j.jpowsour.2004.03.026

    Article  CAS  Google Scholar 

  54. CENELEC (2012) Electric double-layer capacitors for use in hybrid electric vehicles – Test methods for electrical characteristics (IEC 62576:2009; EN 62576:2010) Na

  55. Delacourt C, Ridgway PL, Srinivasan V, Battaglia V (2014) Measurements and simulations of electrochemical impedance spectroscopy of a three-electrode coin cell design for Li-ion cell testing. J Electrochem Soc 161:A1253–A1260. https://doi.org/10.1149/2.0311409jes

    Article  CAS  Google Scholar 

  56. Murer N, Diard JP, Petrescu B (2020) The effects of time-variance on impedance measurements: examples of a corroding electrode and a battery cell. J Electrochem Sci Eng 10:127–140. https://doi.org/10.5599/jese.725

    Article  Google Scholar 

  57. Sugano K (2021) Lost in modelling and simulation? ADMET DMPK 9:75–109. https://doi.org/10.5599/admet.923

    Article  Google Scholar 

  58. Avdeef A (2021) Do you know your r2? ADMET DMPK J 9:69–74

    Google Scholar 

  59. Kaus M, Kowal J, Sauer D (2010) Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim Acta 55:7516–7523. https://doi.org/10.1016/j.electacta.2010.01.002

    Article  CAS  Google Scholar 

  60. Kowal J, Avaroglu E, Chamekh F et al (2011) Detailed analysis of the self-discharge of supercapacitors. J Power Sources 196:573–579. https://doi.org/10.1016/j.jpowsour.2009.12.028

  61. Roberts AJ, Slade RCT (2010) Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochim Acta 55:7460–7469. https://doi.org/10.1016/j.electacta.2010.01.004

  62. Ruiz V, Blanco C, Santamaría R et al (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200. https://doi.org/10.1016/j.carbon.2008.09.048

  63. EC-Lab – Application Note (2017) # 62 How to measure the internal resistance of a battery using EIS ? 1–6

  64. Moškon J, Talian SD, Dominko R, Gaberšček M (2020) Advances in understanding li battery mechanisms using impedance spectroscopy. J Electrochem Sci Eng 10:79–93. https://doi.org/10.5599/jese.734

    Article  CAS  Google Scholar 

  65. Dsoke S, Tian X, Täubert C et al (2013) Strategies to reduce the resistance sources on electrochemical double layer capacitor electrodes. J Power Sources 238:422–429. https://doi.org/10.1016/j.jpowsour.2013.04.031

  66. Allagui A, Freeborn TJ, Elwakil AS, Maundy BJ (2016) Reevaluation of performance of electric double-layer capacitors from constant-current charge/discharge and cyclic voltammetry. Sci Rep 6:38568. https://doi.org/10.1038/srep38568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Batalla García B, Feaver AM, Zhang Q et al (2008) Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors. J Appl Phys 104:14305. https://doi.org/10.1063/1.2949263

    Article  CAS  Google Scholar 

  68. Karden E, Buller S, De Doncker RW (2002) A frequency-domain approach to dynamical modeling of electrochemical power sources. Electrochim Acta 47:2347–2356. https://doi.org/10.1016/S0013-4686(02)00091-9

  69. Atebamba J-M, Moskon J, Pejovnik S, Gaberscek M (2010) On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries. J Electrochem Soc 157:A1218. https://doi.org/10.1149/1.3489353

    Article  CAS  Google Scholar 

  70. Gaberšček M, Moškon J, Erjavec B et al (2008) The importance of interphase contacts in li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid-State Lett 11:A170. https://doi.org/10.1149/1.2964220

    Article  CAS  Google Scholar 

  71. Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049. https://doi.org/10.1021/nn101595y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of Croatian Science Foundation under the project ESUP-CAP (IP-11-2013-8825) is greatly acknowledged.

Funding

Hrvatska Zaklada za Znanost, IP-11–2013-8825, Zoran Mandic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Mandić.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopčić, S., Antonić, D. & Mandić, Z. Effects of the composition of active carbon electrodes on the impedance performance of the AC/AC supercapacitors. J Solid State Electrochem 26, 591–605 (2022). https://doi.org/10.1007/s10008-021-05112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05112-8

Keywords

Navigation