Skip to main content

Advertisement

Log in

Eu3+/Eu2+ redox energy in a new lithium intercalation compound LixEuTa7O19 (0 ≤ x ≤ 1)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical lithium intercalation is observed in LixEuTa7O19 with 0 ≤ x ≤ 1; the voltage profiles show a 4f6/4f7 Eu3+/Eu2+ redox plateau at 1.85 V versus Li+/Li0. The shift of 1 V in the Eu3+/Eu2+ redox plateau relative to that found in the layered perovskite LiEuTiO4 (0.85 V versus Li+/Li0) can be attributed to a capacitance energy stored in the three parallel planes (Eu2O2)2+-(TiO2)0-(Li2O2)2- in LiEuTiO4. Optical measurements show that the energy gaps between the Eu: 4f6 and O:2p6 band edges for LiEuTiO4 and EuTa7O19 are 3.86 and 3.94 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van der Ven A, Bhattacharya J, Belak AA (2013) Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res 46(5):1216–1225

    Article  PubMed  Google Scholar 

  2. Padhi AK (1997) Ph.D. thesis mapping redox energies of electrode materials for lithium batteries. The University of Texas at Austin, Austin

  3. Goodenough JB (1998) Mapping of Redox Energies. Molecular crystals and liquid crystals science and technology. Section A. Mol Cryst Liq Cryst 311:409–422

    CAS  Google Scholar 

  4. Dampier FW (1974) The Cathodic Behavior of CuS, MoO3 and MnO2 in Lithium Cells. J Electrochem Soc 121(5):656–660

    Article  CAS  Google Scholar 

  5. Dickens PG, French SJ, Hight AT, Pye MF (1979) Phase relationships in the ambient temperature LixV2O5 system (0.1˂x˂1.0). Mater Res Bull 14(10):1295–1299

    Article  CAS  Google Scholar 

  6. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0˂x≤1): A new cathode materials for batteries of high energy density. Mater Res Bull 15(6):783–789

    Article  CAS  Google Scholar 

  7. Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB (1984) Electrochemical extraction of lithium from LiMn2O4. Mater Res Bull 19(2):179–187

    Article  CAS  Google Scholar 

  8. Manthiram A, Goodenough JB (1987) Lithium Insertion into Fe2(MO4)3 Frameworks: Comparison of M= W with M= Mo*. J Solid State Chem 71(2):349–360

    Article  CAS  Google Scholar 

  9. Dahn JR, Sacken UV, Michal CA (1990) Structure and Electrochemistry of Li1±yNiO2 and a New Li2Ni2O2 Phase with the Ni(OH)2 Structure. Solid State Ionics 44(1-2):87–97

    Article  CAS  Google Scholar 

  10. Barboux P, Tarascon JM, Shokoohi FK (1991) The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. J Solid State Chem 94(1):185–196

    Article  CAS  Google Scholar 

  11. Ferg E, Gummow RJ, de Kock A, Thackeray MM (1994) Spinel Anodes for Lithium-Ion Batteries. J Electrochem Soc 141(11):L147–L150

    Article  CAS  Google Scholar 

  12. Masquelier C, Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) New cathode materials for rechargeable Lithium batteries: the 3-D framework structures Li3Fe2(XO4)3 (X= P, As). J Solid State Chem 135(2):228–234

    Article  CAS  Google Scholar 

  13. Robertson AD, Trevino L, Tukamoto H, Irvine JTS (1999) New inorganic spinel oxides for use as negative electrode materials in future Lithium-Ion batteries. J Power Sources 81-82:352–357

    Article  CAS  Google Scholar 

  14. Lindley D (2010) The Energy Storage Problem. Nature 43:18–20

    Article  Google Scholar 

  15. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  PubMed  Google Scholar 

  16. Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7(1):14–18

    Article  CAS  Google Scholar 

  17. Yu CY, Park JS, Jung HG, Chung KY, Aurbach D, Sun YK, Myung ST (2015) NaCrO2 Cathode for High-Rate Sodium-Ion Batteries. Energy Environ Sci 8(7):2019–2026

    Article  CAS  Google Scholar 

  18. Chen CC, Fu L, Maier J (2016) Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536(7615):159–165

    Article  CAS  PubMed  Google Scholar 

  19. Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Gerbaldi C (2016) A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon 107:811–822

    Article  CAS  Google Scholar 

  20. Federico B, Muñoz-García AB, Francesca C, Giuseppina M, Andrea L, Matteo D, Michele P, Claudio G (2018) Combined structural, chemometric, and electrochemical investigation of vertically aligned TiO2 nanotubes for Na-ion batteries. ACS Omega 3:8440–8450

    Article  Google Scholar 

  21. Lefrancois PL, Francesca C, Giuseppina M, Kyoungsoo K, Sonia F, Federico B, Nair JR, Chiara V-B, Justyna F, Freddy K, Claudio G (2018) Spray-Dried Mesoporous Mixed Cu-Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Li-Ion Battery Anodes. Adv Energy Mater 8(35):1802438

    Article  Google Scholar 

  22. Heng Z, Wenbin F, Runhua F, Davoud D, Wang H, Zhicheng S (2020) Bilayer carbon nanowires/nickel cobalt hydroxides nanostructures for high-performance supercapacitors. Mater Lett 263:127217

    Article  Google Scholar 

  23. Nee LS, Neeraj S, Damian G, Hendra SW, Leoni TM, Paul B, Sean L, Wang D-W, Jason S, Rose A, Yun HN (2017) An operando mechanistic evaluation of a solar-rechargeable sodium-ion intercalation battery. Adv Energy Mater 7:1700545

    Article  Google Scholar 

  24. Guo X, Yu D, Xue L, Leyuan Z, Changkun Z, Goodenough JB, Yu G (2018) A Self-Healing Room-Temperature Liquid-Metal Anode for Alkali-Ion Batteries. Adv Funct Mater 28(46):1804649

    Article  Google Scholar 

  25. Wu S, Fan Z, Yongbing T (2018) A Novel Calcium-Ion Battery Based on Dual-Carbon Configuration with High Working Voltage and Long Cycling Life. Adv Sci 5:1701082

    Article  Google Scholar 

  26. Arianna M, Muñoz-García AB, Pasqualino M, Federico B, Giuseppina M, Claudio G, Michele P (2020) First-Principles Study of Na Insertion at TiO2 Anatase Surfaces: New Hints for Na-Ion Battery Design. Nanoscale Adv 2:2745–2751

    Article  Google Scholar 

  27. Ying L, Wu X (2021) Review of Vanadium-Based Electrode Materials for Rechargeable Aqueous Zinc Ion Batteries. J Energy Chem 56:223–237

    Article  Google Scholar 

  28. Praphulla R, Sreenivas J (2021) Influence of electrode design parameters on the performance of vanadium redox flow battery cells at low temperatures. J Power Sources 482:228988

    Article  Google Scholar 

  29. Song SH, Ahn KH, Kanatzidis MG, Alonso JA, Cheng JG, Goodenough JB (2013) Effect of an Internal Electric Field on the Redox Energies of ALnTiO4 (A= Na or Li, Ln= Y or Rare-Earth). Chem Mater 2:3852–3857

    Article  Google Scholar 

  30. Song SH, Alonso JA, Cheng JG, Goodenough JB (2014) Magnetic phase transformation induced by electrochemical lithium intercalation in Li1+xEuTiO4 and Li2+2xEu2Ti3O10 (0≤x≤1) compounds. J Solid State Electrochem 18(7):2047–2060

    Article  CAS  Google Scholar 

  31. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I. J Opt Soc Am 38(5):448–457

    Article  CAS  PubMed  Google Scholar 

  32. Laubschat C, Perscheid B, Schneide WD (1983) Final-state effects and surface valence in Eu-Transition-metal compounds. Phys Rev B 28(8):4342–4348

    Article  CAS  Google Scholar 

  33. Bezrkovnyi OS, Vorokhta M, Malecka M, Mista W, Kepinski L (2020) NAP-XPS Study of Eu3+ → Eu2+ and Ce4+ → Ce3+ Reduction in Au/Ce0.80Eu0.20O2 Catalyst. Catal Commun 135:105875

    Article  CAS  Google Scholar 

  34. Wang K, Zhi L, Herranz CT, Miquel S, Liang H (2020) In situ spectroscopic observation of activation and transformation of tantalum suboxides. J Phys Chem A 114:2489–2497

    Article  Google Scholar 

  35. Goncalves RV, Robert W, Uberman PM, Teixeira SR, Rossi Liane M (2014) Insights into the active surface species formed on Ta2O5 nanotubes in the catalytic oxidation of CO. Phys Chem Chem Phys 16(12):5755–5762

    Article  CAS  PubMed  Google Scholar 

  36. Davoud D, Londhe PU, Chaure Nandu B (2014) Characterization of TiO2 nanoparticles prepared using different surfactants by Sol-Gel Method. J Mater Sci Mater Electron 25:3473–3479

    Article  Google Scholar 

  37. Reza S, Ali A, Stefan T, Davoud D, Carlos L, Sahar R (2020) Stereometric analysis of TiO2 thin films deposited by electron bean ion assisted. Opt Quant Electron 52:270

    Article  Google Scholar 

  38. Binnemans K (2015) Interpretation of Europium(III) Spectra. Coord Chem Rev 295:1–45

    Article  CAS  Google Scholar 

  39. Zhu X, Yang J, Davoud D, Hamid G, Runhua F, Zhicheng S (2019) Fabrication of Core-Shell Structured Ni@BaTiO3 Scaffolds for Polymer Composites with Ultrahigh Dielectric Constant and Low Loss. Compos Part A 125:105521

    Article  CAS  Google Scholar 

  40. Yang J, Zhu X, Wang H, Wang X, Chuncheng H, Runhua F, Davoud D, Zhicheng S (2020) Achieving Excellent Dielectric Performance in Polymer Composites with Ultralow Filler Loadings via Constructing Hollow-Structured Filler Frameworks. Compos Part A 131:105814

    Article  CAS  Google Scholar 

  41. Liang S, Zhicheng S, Wang H, Kun Z, Davoud D, Kai S, Runhua F (2020) Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) Composites. J Mater Chem A 8:5750–5757

    Article  Google Scholar 

  42. Liang S, Zhicheng S, Liang L, Shuang W, Wang H, Davoud D, Kai S, Runhua F (2020) Layer-Structured BaTiO3/P(VDF-HFP) Composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J Mater Chem C 8:10257–10265

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2013R1A1A2057999 and 2020R1I1A1A01055231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hoon Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, SH. Eu3+/Eu2+ redox energy in a new lithium intercalation compound LixEuTa7O19 (0 ≤ x ≤ 1). J Solid State Electrochem 25, 1433–1439 (2021). https://doi.org/10.1007/s10008-021-04927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04927-9

Keywords

Navigation