Skip to main content
Log in

Determination of the potential of zero charge of Pt/CO electrodes using an impinging jet system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this manuscript, the potential of zero charge (pzc) of platinum single-crystal electrodes has been determined using the impinging jet system and recording the transient associated with the interphase formation. Initially, the Pt(111), Pt(110), and Pt(100) electrodes covered with CO were used. To demonstrate the validity of the procedure, the values obtained for the pzc of these electrodes were compared with those previously reported in the literature and also with those expected from work function changes. An excellent agreement has been found. After that, the values for the pzc of the stepped surfaces having (111) terraces and (110) steps were determined. For these surfaces, the pzc initially diminishes as the step density increases, in accordance with the expected diminution of the work function due to the Smoluchowski effect on the step site. However, for the shorter terraces, the pzc value increases with the step density, probably because of step dipole-dipole coupling due to the presence of a CO layer on the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Frumkin AN (1955) Absorption phenomena and electrochemical kinetics. Z Elektrochem Angew Phys Chem 59:807–822

    CAS  Google Scholar 

  2. Briega-Martos V, Herrero E, Feliu JM (2019) Pt(hkl) surface charge and reactivity. Curr Opin Electrochem 17:97–105

    Article  CAS  Google Scholar 

  3. Ledezma-Yanez I, Wallace WDZ, Sebastian-Pascual P et al (2017) Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy 2(4). https://doi.org/10.1038/nenergy.2017.31

  4. Prieto A, Hernández J, Herrero E, Feliu JM (2003) The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes. J Solid State Electrochem 7(9):599–606. https://doi.org/10.1007/s10008-003-0362-3

    Article  CAS  Google Scholar 

  5. Briega-Martos V, Herrero E, Feliu JMJM (2017) The inhibition of hydrogen peroxide reduction at low potentials on Pt(111): hydrogen adsorption or interfacial charge? Electrochem Commun 85:32–35. https://doi.org/10.1016/j.elecom.2017.10.016

    Article  CAS  Google Scholar 

  6. Martínez-Hincapié R, Climent V, Feliu JM (2018) Peroxodisulfate reduction as a probe to interfacial charge. Electrochem Commun 88:43–46. https://doi.org/10.1016/j.elecom.2018.01.012

    Article  CAS  Google Scholar 

  7. Martínez-Hincapié R, Climent V, Feliu JM (2019) Peroxodisulfate reduction on platinum stepped surfaces vicinal to the (110) and (100) poles. J Electroanal Chem 847:113226. https://doi.org/10.1016/J.JELECHEM.2019.113226

    Article  Google Scholar 

  8. Briega-Martos V, Herrero E, Feliu JMJM (2017) Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim Acta 241:497–509. https://doi.org/10.1016/j.electacta.2017.04.162

    Article  CAS  Google Scholar 

  9. Frumkin AN, Petrii OA (1975) Potentials of zero total charge and zero free charge of platinum group metals. Electrochim Acta 20(5):347–359

    Article  CAS  Google Scholar 

  10. Feliu JM, Orts JM, Gómez R, Aldaz A, Clavilier J (1994) New information on the unusual adsorption states of Pt(111) in sulphuric acid solutions from potentiostatic adsorbate replacement by CO. J Electroanal Chem 372(1-2):265–268

    Article  CAS  Google Scholar 

  11. Climent V, Gómez R, Feliu JM (1999) Effect of increasing amount of steps on the potential of zero total charge of Pt(111) electrodes. Electrochim Acta 45(4-5):629–637

    Article  CAS  Google Scholar 

  12. Rodes A, Gómez R, Feliu JM, Weaver MJ (2000) Sensitivity of compressed carbon monoxide adlayers on platinum(III) electrodes to long-range substrate structure: influence of monoatomic steps. Langmuir 16(2):811–816

    Article  CAS  Google Scholar 

  13. Climent V, García-Araez N, Herrero E, Feliu J (2006) Potential of zero total charge of platinum single crystals: a local approach to stepped surfaces vicinal to Pt(111). Russ J Electrochem 42(11):1145–1160. https://doi.org/10.1134/S1023193506110012

    Article  CAS  Google Scholar 

  14. Cuesta A (2004) Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: the potential of zero charge of Pt(111). Surf Sci 572(1):11–22

    Article  CAS  Google Scholar 

  15. Rizo R, Sitta E, Herrero E, Climent V, Feliu JM (2015) Towards the understanding of the interfacial pH scale at Pt(111) electrodes. Electrochim Acta 162:138–145

    Article  CAS  Google Scholar 

  16. Garcia-Araez N, Climent V, Herrero E, Feliu JM, Lipkowski J (2006) Thermodynamic approach to the double layer capacity of a Pt(1 1 1) electrode in perchloric acid solutions. Electrochim Acta 51(18):3787–3793. https://doi.org/10.1016/j.electacta.2005.10.043

    Article  CAS  Google Scholar 

  17. Trasatti S (1971) Work function, electronegativity, and electrochemical behaviour of metals. II. Potentials of zero charge and “electrochemical” work functions. J Electroanal Chem 33(2):351–378. https://doi.org/10.1016/S0022-0728(71)80123-7

    Article  CAS  Google Scholar 

  18. Gómez R, Climent V, Feliu JM, Weaver MJ (2000) Dependence of the potential of zero charge of stepped platinum (111) electrodes on the oriented step-edge density: electrochemical implications and comparison with work function behavior. J Phys Chem B 104(3):597–605

    Article  Google Scholar 

  19. Weaver MJ (1998) Potentials of zero charge for platinum(111)-aqueous interfaces: a combined assessment from in-situ and ultrahigh-vacuum measurements. Langmuir 14(14):3932–3936. https://doi.org/10.1021/La9801054

    Article  CAS  Google Scholar 

  20. Jakuszewski B, Kozlowski Z (1962) Determination of zero-charge potential by the immersion method. Rocz Chem 36:1873–1877

    CAS  Google Scholar 

  21. Błaszczyk T, Jakuszewski B, Czajkowski JM (1983) Zero charge potential of mercury in the mixtures of formamide and N-methylformamide with ethylene glycol. Electrochim Acta 28(5):675–679. https://doi.org/10.1016/0013-4686(83)85063-4

    Article  Google Scholar 

  22. Hamm UW, Kramer D, Zhai RS, Kolb DM (1996) The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique. J Electroanal Chem 414(1):85–89

    Article  Google Scholar 

  23. Clavilier J, Armand D, Sun SG, Petit M (1986) Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. J Electroanal Chem 205(1-2):267–277

    Article  CAS  Google Scholar 

  24. Herrero E, Orts JM, Aldaz A, Feliu JM (1999) Scanning tunneling microscopy and electrochemical study of the surface structure of Pt(10,10,9) and Pt(11,10,10) electrodes prepared under different cooling conditions. Surf Sci 440(1-2):259–270. https://doi.org/10.1016/S0039-6028(99)00813-4

    Article  CAS  Google Scholar 

  25. Clavilier J (1980) The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region. J Electroanal Chem 107(1):211–216

    Article  CAS  Google Scholar 

  26. Rodes A, Clavilier J, Orts JM et al (1992) Electrochemical behavior of platinum (100) in various acidic media. Part II. On the relation between the voltammetric profiles induced by anion specific adsorption studied with a transfer technique preserving surface cleanliness and structure. J Electroanal Chem 338:317–338

    Article  CAS  Google Scholar 

  27. Gómez R, Clavilier J (1993) Electrochemical behaviour of platinum surfaces containing (110) sites and the problem of the third oxidation peak. J Electroanal Chem 354(1-2):189–208

    Article  Google Scholar 

  28. Attard GA, Hunter K, Wright E, Sharman J, Martínez-Hincapié R, Feliu JM (2017) The voltammetry of surfaces vicinal to Pt{110}: structural complexity simplified by CO cooling. J Electroanal Chem 793:137–146. https://doi.org/10.1016/j.jelechem.2016.10.005

    Article  CAS  Google Scholar 

  29. Nieuwenhuys BE, Sachtler WMH (1973) Crystal face specificity of nitrogen adsorption on a platinum field emission tip. Surf Sci 34(2):317–336. https://doi.org/10.1016/0039-6028(73)90121-0

    Article  CAS  Google Scholar 

  30. Rotermund HH, Jakubith S, Kubala S, von Oertzen A, Ertl G (1990) Investigation of surfaces by scanning photoemission microscopy. J Electron Spectrosc Relat Phenom 52:811–819

    Article  CAS  Google Scholar 

  31. Herrero E, Álvarez B, Feliu JM, Blais S, Radovic-Hrapovic Z, Jerkiewicz G (2004) Temperature dependence of the CO<inf>ads</inf> oxidation process on Pt(1 1 1), Pt(1 0 0), and Pt(1 1 0) electrodes. J Electroanal Chem 567(1):139–149. https://doi.org/10.1016/j.jelechem.2003.12.019

    Article  CAS  Google Scholar 

  32. Angelucci CACA, Herrero E, Feliu JMJM (2010) Modeling CO oxidation on Pt(111) electrodes. J Phys Chem C 114(33):14154–14163. https://doi.org/10.1021/jp103597w

    Article  CAS  Google Scholar 

  33. Attard GA, Souza-Garcia J, Martínez-Hincapié R, Feliu JM (2019) Nitrate anion reduction in aqueous perchloric acid as an electrochemical probe of Pt{1 1 0}-(1 × 1) terrace sites. J Catal 378:238–247. https://doi.org/10.1016/j.jcat.2019.09.002

    Article  CAS  Google Scholar 

  34. Trasatti S (1995) Surface science and electrochemistry: concepts and problems. Surf Sci 335:1–9

    Article  CAS  Google Scholar 

  35. Trasatti S (1990) The “absolute” electrode potential-the end of the story. Electrochim Acta 35(1):269–271. https://doi.org/10.1016/0013-4686(90)85069-Y

    Article  CAS  Google Scholar 

  36. Lang B, Joyner RW, Somorjai GA (1972) Low energy electron diffraction studies of high index crystal surfaces of platinum. Surf Sci 30(2):440–453. https://doi.org/10.1016/0039-6028(72)90011-8

    Article  CAS  Google Scholar 

  37. Lebedeva NP, Rodes A, Feliu JM, Koper MTM, van Santen RA (2002) Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum electrodes as studied by in situ infrared spectroscopy. J Phys Chem B 106(38):9863–9872. https://doi.org/10.1021/jp0203806

    Article  CAS  Google Scholar 

  38. Bergelin M, Herrero E, Feliu JMM, Wasberg M (1999) Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients. J Electroanal Chem 467(1-2):74–84. https://doi.org/10.1016/S0022-0728(99)00046-7

    Article  CAS  Google Scholar 

  39. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2002) Role of crystalline defects in electrocatalysis: mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J Phys Chem B 106(50):12938–12947. https://doi.org/10.1021/jp0204105

    Article  CAS  Google Scholar 

  40. Smoluchowski R (1941) Anisotropy of the electronic work function of metals. Phys Rev 60(9):661–674. https://doi.org/10.1103/Physrev.60.661

    Article  CAS  Google Scholar 

  41. Busó-Rogero C, Herrero E, Bandlow J, Comas-Vives A, Jacob T (2013) CO oxidation on stepped-Pt(111) under electrochemical conditions: insights from theory and experiment. Phys Chem Chem Phys 15(42):18671–18677. https://doi.org/10.1039/c3cp53282h

    Article  CAS  PubMed  Google Scholar 

  42. Ferre-Vilaplana A, Gisbert R, Herrero E (2014) On the electrochemical properties of platinum stepped surfaces vicinal to the (100) pole. A computational study. Electrochim Acta 125:666–673. https://doi.org/10.1016/j.electacta.2014.01.138

    Article  CAS  Google Scholar 

  43. Gómez R, Feliu JM, Aldaz A, Weaver MJ (1998) Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments. Surf Sci 410(1):48–61

    Article  Google Scholar 

  44. Climent V, Feliu JM, Alkire RC, et al (2017) Surface electrochemistry with Pt single-crystal electrodes Nanopatterned and Nanoparticle-Modified Electrodes 17

  45. Villegas I, Weaver MJ (1994) Carbon monoxide adlayer structures on platinum (111) electrodes: a synergy between in-situ scanning tunneling microscopy and infrared spectroscopy. J Chem Phys 101(2):1648–1660. https://doi.org/10.1063/1.467786

    Article  CAS  Google Scholar 

  46. Kiskinova M, Szab A, Yates JT (1988) Compressed CO overlayers on Pt(111) — evidence for tilted CO species at high coverages by digital ESDIAD. Surf Sci 205(1-2):215–229. https://doi.org/10.1016/0039-6028(88)90173-2

    Article  CAS  Google Scholar 

  47. Rhee CK, Feliu JM, Herrero E, Mrozek P, Wieckowski A (1993) Auger electron spectroscopy, low-energy electron diffraction, and electrochemistry of carbon monoxide on a Pt( 100) electrode. J Phys Chem 97(38):9730–9735

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by MINECO-FEDER (Spain) through project CTQ2016-76221-P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Herrero or J. M. Feliu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boronat-González, A., Herrero, E. & Feliu, J.M. Determination of the potential of zero charge of Pt/CO electrodes using an impinging jet system. J Solid State Electrochem 24, 2871–2881 (2020). https://doi.org/10.1007/s10008-020-04654-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04654-7

Keywords

Navigation