Skip to main content
Log in

An overview of degradation in solid oxide fuel cells-potential clean power sources

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs) have emerged as the potential power generating devices, being profoundly effective, biofuel-based, and causing negligible harm to the environment. The commercialization of this device would introduce a new revolution in the field of electronic devices and power age. The performance of SOFCs is subject to the efficient working of its significant segments like anode, cathode, electrolyte, interconnect, and sealant. The mechanism of working of a SOFC, the kinetics and thermodynamics involved, as well as the composition of the fuel utilized are other vital variables in-charge of the performance of SOFCs. The serious issue with these devices has been the degradation of the components at high temperatures because of both intrinsic and extrinsic factors. Plenty of researchers have attempted to address this issue of degradation. Despite the fact that there are a large number of articles and reviews on corrosion, very few comprehensive reports have been published. In this review, various aspects of degradation have been covered including the mechanism, remedies, and alternatives as proposed by various researchers. It is a comprehensive review of degradation in SOFCs covering the most recent advances in the study of degradation and its mitigation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

XPS:

X-ray photoelectron spectroscopy

AFM:

Atomic force microscopic

TEM:

Transmission electron microscopy

EDS:

Energy dispersive spectroscopy

SOFC:

Solid oxide fuel cells

Liq.:

Liquid

TPB:

Triple phase boundary

XRD:

X-ray diffraction

ASR:

Area specific resistance

IT:

Intermediate temperature

Atm p:

Atmospheric pressure

↑:

Increases

SEM:

Scanning electron microscope

YCSB:

Yttria-ceria double- doped bismuth oxide

EIS:

Electrochemical impedance spectra

LT:

Low temperature

SYN:

Strontium yttrium nickel

Conc.:

Concentration

SSZ:

Scandia-stabilized zirconia

YSZ:

Yttria-stabilized zirconia

GDC:

Gadolinia-Doped Ceria

IGCC:

Integrated gasification combined cycle

YDC:

Yttria-doped ceria

SDC:

Samarium-doped ceria

ORR:

Oxygen reduction reaction

T:

Temperature

P:

Pressure

Rxn.:

Reaction

↓:

Decreases

EPMA:

Electron probe micro analyzer

OCV:

Open circuit voltage

EDX:

Energy dispersive X- ray analysis

MPD:

Maximum power density

References

  1. Singhal SC (2000) Recent advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313

    Article  CAS  Google Scholar 

  2. Minh NQ (2004) Solid oxide fuel cell technology—features and applications. Solid State Ionics 174:271–277

    Article  CAS  Google Scholar 

  3. Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6:433–455

    Article  CAS  Google Scholar 

  4. Kim SJ, Choi MB, Park M et al (2017) Acceleration tests: degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures. J Power Sources 360:284–293

    Article  CAS  Google Scholar 

  5. Liu L, Kim GY, Chandra A (2012) Modeling of Ni-CGO anode in a solid oxide fuel cell deposited by spray pyrolysis. J Power Sources 210:129–137

    Article  CAS  Google Scholar 

  6. Jiang SP (2003) Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells. J Mater Sci 38:3775–3782

    Article  CAS  Google Scholar 

  7. Faes A, Hessler-Wyser A, Presvytes D et al (2009) Nickel-zirconia anode degradation and triple phase boundary quantification from microstructural analysis. Fuel Cells 9:841–851

    Article  CAS  Google Scholar 

  8. Tanasini P, Cannarozzo M, Costamagna P et al (2009) Experimental and theoretical investigation of degradation mechanisms by particle coarsening in sofc electrodes. Fuel Cells 9:740–752

    Article  CAS  Google Scholar 

  9. Kennouche D, Chen-Wiegart YK, Cronin JS et al (2013) Three-dimensional microstructural evolution of Ni- Yttria-stabilized zirconia solid oxide fuel cell anodes at elevated temperatures. J Electrochem Soc 160:F1293–F1304

    Article  CAS  Google Scholar 

  10. Khan MZ, Mehran MT, Song R-H, Leed J-W, Seung-Bok Leea T-HL (2018) A simplified approach to predict performance degradation of solid oxide fuel cell anode. J Power Sources 391:94–105

    Article  CAS  Google Scholar 

  11. Haga K, Shiratori Y, Ito K, Sasaki K (2008) Chlorine poisoning of SOFC Ni-cermet anodes. J Electrochem Soc 155:B1233

    Article  CAS  Google Scholar 

  12. Larminie J, Dicks A, Fuel Cell Systems Explained (Second edition). Wiley Publications

  13. Yang Z, Guo M, Wang N, Ma C, MH JW (2017) A short review on of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrog Energy 42:24948–24959

    Article  CAS  Google Scholar 

  14. Pavone M, EAC AMR (2011) Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ Sci 4:4933

    Article  CAS  Google Scholar 

  15. Lee KC, Choi MB, Lim DK et al (2013) Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes. J Power Sources 232:224–233. https://doi.org/10.1016/j.jpowsour.2013.01.001

    Article  CAS  Google Scholar 

  16. Zhao Z, Liu L, Zhang X, Wu W, Tu B, Cheng D (2013) High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode operating under CO2/H2O-containing atmosphere. Int J Hydrog Energy 38:15361–15370

    Article  CAS  Google Scholar 

  17. Hu B, Mahapatra MK, HZ MK, Misture S (2014) Effect of CO2 on the stability of strontium doped lanthanum magnitite cathode. J Power Sources 268:404–413

    Article  CAS  Google Scholar 

  18. Yang Q, Lin YS (2006) kinetics of carbon dioxide sorption on perovskite type metal oxides. Ind Eng Chem Res 45:6302–6310

    Article  CAS  Google Scholar 

  19. Yang Z, Guo M, Wang N et al (2017) A short review of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrog Energy 42:24948–24959

    Article  CAS  Google Scholar 

  20. Sreedhar I, Agarwal B, Goyal P, Singh SA (2019) Recent advances in material and performance aspects of solid oxide fuel cells. J Electroanal Chem 113315

  21. Brandon N (2017) Chapter- “An Introduction to Solid Oxide Fuel Cell Materials, Technology and Applications”, Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells, 1st Edition, Academic press Elsevier

  22. Aphale A, Liang C, Hu B, Singh P (2017) Cathode Degradation From Airborne Contaminants in Solid Oxide Fuel Cells, Solid Oxide Fuel Cell Lifetime and Reliability, 101-119

  23. Zhao Z, Liu L, Zhang X et al (2013) A comparison on effects of CO2 on La0.8Sr0.2MnO3+δ and La0.6Sr0.4CoO3-δ cathodes. J Power Sources 222:542–553. https://doi.org/10.1016/j.jpowsour.2012.09.023

    Article  CAS  Google Scholar 

  24. Hu B, Mahapatra MK, Keane M et al (2014) Effect of CO2 on the stability of strontium doped lanthanum manganite cathode. J Power Sources 268:404–413. https://doi.org/10.1016/j.jpowsour.2014.06.044

    Article  CAS  Google Scholar 

  25. Darvish S, Asadikiya M, Hu B et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41:10239–10248. https://doi.org/10.1016/j.ijhydene.2016.05.063

    Article  CAS  Google Scholar 

  26. Nielsen J, Hagen A, Liu YL (2010) Effect of cathode gas humidification on performance and durability of solid oxide fuel cells. Solid State Ionics 181:517–524. https://doi.org/10.1016/j.ssi.2010.02.018

    Article  CAS  Google Scholar 

  27. Nielsen J, Mogensen M (2011) SOFC LSM:YSZ cathode degradation induced by moisture: an impedance spectroscopy study. Solid State Ionics 189:74–81. https://doi.org/10.1016/j.ssi.2011.02.019

    Article  CAS  Google Scholar 

  28. Bucher E, Sitte W, Klauser F, Bertel E (2012) Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La 0.6Sr 0.4CoO 3 - δ. Solid State Ionics 208:43–51. https://doi.org/10.1016/j.ssi.2011.12.005

    Article  CAS  Google Scholar 

  29. Bucher E, Sitte W, Klauser F, Bertel E (2011) Oxygen exchange kinetics of La0.58Sr0.4Co 0.2Fe0.8O3 at 600 °c in dry and humid atmospheres. Solid State Ionics 191:61–67. https://doi.org/10.1016/j.ssi.2011.03.019

    Article  CAS  Google Scholar 

  30. Bucher E, Sitte W (2011) Long-term stability of the oxygen exchange properties of (La,Sr) 1—Z(Co,Fe)O3 - δ in dry and wet atmospheres. Solid State Ionics 192:480–482. https://doi.org/10.1016/j.ssi.2010.01.006

    Article  CAS  Google Scholar 

  31. Knöfel C, Chen M, Mogensen M (2011) The effect of humidity and oxygen partial pressure on LSM-YSZ cathode. Fuel Cells 11:669–677. https://doi.org/10.1002/fuce.201100021

    Article  CAS  Google Scholar 

  32. Hu B, Keane M, Mahapatra MK, Singh P (2014) Stability of strontium-doped lanthanum manganite cathode in humidified air. J Power Sources 248:196–204. https://doi.org/10.1016/j.jpowsour.2013.08.098

    Article  CAS  Google Scholar 

  33. Shen F, Lu K (2015) Moisture effect on La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 cathode behaviors in solid oxide fuel cells. Fuel Cells 15:105–114. https://doi.org/10.1002/fuce.201400032

    Article  CAS  Google Scholar 

  34. Hagen A, Neufeld K, Liu YL (2010) Effect of humidity in air on performance and long-term durability of SOFCs. J Electrochem Soc 157:B1343. https://doi.org/10.1149/1.3459904

    Article  CAS  Google Scholar 

  35. Liu RR, Kim SH, Taniguchi S et al (2011) Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J Power Sources 196:7090–7096. https://doi.org/10.1016/j.jpowsour.2010.08.014

    Article  CAS  Google Scholar 

  36. Bucher E, Gspan C, Hofer F, Sitte W (2013) Post-test analysis of silicon poisoning and phase decomposition in the SOFC cathode material La0.58Sr0.4Co0.2Fe0.8O3-δ by transmission electron microscopy. Solid State Ionics 230:7–11. https://doi.org/10.1016/j.ssi.2012.08.013

    Article  CAS  Google Scholar 

  37. Perz M, Bucher E, Gspan C et al (2016) Long-term degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ IT-SOFC cathodes due to silicon poisoning. Solid State Ionics 288:22–27. https://doi.org/10.1016/j.ssi.2016.01.005

    Article  CAS  Google Scholar 

  38. Schrödl N, Bucher E, Egger A et al (2015) Long-term stability of the IT-SOFC cathode materials La0.6Sr0.4CoO3 - δ and La2NiO4+δ against combined chromium and silicon poisoning. Solid State Ionics 276:62–71. https://doi.org/10.1016/j.ssi.2015.03.035

    Article  CAS  Google Scholar 

  39. Schuler JA, Wuillemin Z, Hessler-Wyser A, Van Herle J (2010) Glass-forming exogenous silicon contamination in solid oxide fuel cell cathodes. Electrochem Solid-State Lett 14:B20. https://doi.org/10.1149/1.3516622

    Article  CAS  Google Scholar 

  40. Reisert M, Aphale A, Singh P (2018) Solid oxide electrochemical systems: material degradation processes and novel mitigation approaches. Materials (Basel) 11:2169. https://doi.org/10.3390/ma11112169

    Article  CAS  Google Scholar 

  41. Bucher E (2011) A review of surface-related effects limiting the performance of solid oxide fuel cell cathodes. Berg- und Hüttenmännische Monatshefte 156:423–428

    Article  CAS  Google Scholar 

  42. Wang CC, O’Donnell K, Jian L, Jiang SP (2015) Co-deposition and poisoning of chromium and sulfur contaminants on La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathodes of solid oxide fuel cells. J Electrochem Soc 162:F507–F512. https://doi.org/10.1149/2.0231506jes

    Article  CAS  Google Scholar 

  43. Wang CC, Chen K, Jiang SP (2016) Mechanism and kinetics of SO 2 poisoning on the electrochemical activity of La 0.8 Sr 0.2 MnO 3 cathodes of solid oxide fuel cells. J Electrochem Soc 163:F771–F780. https://doi.org/10.1149/2.0221608jes

    Article  CAS  Google Scholar 

  44. Bucher E, Gspan C, Hofer F, Sitte W (2013) Sulphur poisoning of the SOFC cathode material La0.6Sr 0.4CoO3-δ. Solid State Ionics 238:15–23. https://doi.org/10.1016/j.ssi.2013.03.007

    Article  CAS  Google Scholar 

  45. Wang F, Yamaji K, Cho D-H et al (2011) Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs. J Electrochem Soc 158:B1391. https://doi.org/10.1149/2.059111jes

    Article  CAS  Google Scholar 

  46. Wang CC, He S, Chen K et al (2017) Effect of SO 2 poisoning on the electrochemical activity of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathodes of solid oxide fuel cells. J Electrochem Soc 164:F514–F524. https://doi.org/10.1149/2.0421706jes

    Article  CAS  Google Scholar 

  47. Sasaki K, Haga K, Yoshizumi T et al (2011) Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance. J Power Sources 196:9130–9140. https://doi.org/10.1016/j.jpowsour.2010.09.122

    Article  CAS  Google Scholar 

  48. Brito ME, Yokokawa H (2012) degradation mechanism with impurities and life time estimation. Electrochem Soc 42:297–304

    Article  CAS  Google Scholar 

  49. Horita T, Cho DH, Wang F, Nishi M, Shimonosono T, Kishimoto H, Yamaji K, Brito ME, Yokokawa H (2013) Degradation mechanism of SOFC cathodes under CrO3 and SO2 impurity exposures. Electrochem Soc 51:69–77

    Google Scholar 

  50. Yokokawa H, Yamaji K, Yan K et al (2017) The correlation of sulfur distribution in LSCF and performance degradation under different operation temperatures. ECS Trans 78:927–933. https://doi.org/10.1149/07801.0927ecst

    Article  CAS  Google Scholar 

  51. Wang CC, Chen K, Jiang SP (2014) Sulfur deposition and poisoning of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathode materials of solid oxide fuel cells. J Electrochem Soc 161:F1133–F1139. https://doi.org/10.1149/2.0041412jes

    Article  CAS  Google Scholar 

  52. Kishimoto H, Wang F, Cho D-H et al (2015) Degradation of LSCF cathode induced by SO2 in Air. ECS Trans 68:1045–1050. https://doi.org/10.1149/06801.1045ecst

    Article  CAS  Google Scholar 

  53. Budiman RA, Ishiyama T, Bagarinao KD, Kishimoto H, Yamaji K, Horita T, Yokokawa H (2017) Evaluation of electrochemical properties of La0.6Sr0.4Co0.2Fe0.8O3-δ porous electrode with sulphur poisoning. Electrochem Soc 759-764:759–764

    Google Scholar 

  54. Kushi T (2017) Effects of sulfur poisoning on degradation phenomena in oxygen electrodes of solid oxide electrolysis cells and solid oxide fuel cells. Int J Hydrog Energy 42:9396–9405. https://doi.org/10.1016/j.ijhydene.2017.01.151

    Article  CAS  Google Scholar 

  55. Wang CC, Luo D, Jiang SP, Lin B (2018) Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells. Journal of Physics D: Applied Physics 51:43

    Google Scholar 

  56. Choi DW, Ohashi M, Lozano CA, Vanzee JW, Aungkavattana P, Shimpalee S (2019) Sulfur Diffusion of Hydrogen Sulfide Contaminants to Cathode in a Micro-tubular Solid Oxide Fuel Cell. Electrochimica Acta

  57. Fergus JW (2007) Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int J Hydrogen Energy 32(16):3664–3671

    Article  CAS  Google Scholar 

  58. Jiang SP, Sam Zhang YDZ (2005) Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells. Mater Res Soc 20:747–758

    Article  CAS  Google Scholar 

  59. Jiang SP, Zhen Y (2008) Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179:1459–1464. https://doi.org/10.1016/j.ssi.2008.01.006

    Article  CAS  Google Scholar 

  60. Lianga C, Hu B, Aphale A, Venkataraman MB, Mahapatra MK, Singh P (2017) Mitigation of Chromium Assisted Degradation of LSM Cathode in SOFC. Electrochem Soc 75(28):57–64

    Google Scholar 

  61. Zhang X, Yu G, Zeng S et al (2018) Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells. J Power Sources 381:26–29. https://doi.org/10.1016/j.jpowsour.2018.01.072

    Article  CAS  Google Scholar 

  62. Heo SJ, Hu B, Aphale A, Uddin MA, Singh P (2017) Low-Temperature Chromium Poisoning of SOFC Cathode. Electrochem Soc 78(1):1055–1061

    CAS  Google Scholar 

  63. Iwai H, Yamaguchi Y, Kishimoto M, Yoshida H, Saito M (2017) Numerical Study on Progress of Cr Poisoning in LSM-YSZ Cathode of a Planar Solid Oxide Fuel Cell. ECS Transactions 78(1):955–964

    Article  CAS  Google Scholar 

  64. Jiang SP, Zhang JP, Apateanu L, Foger K (2002) Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells. I. Mechanism and Kinetics. J Electrochem Soc 147:4013. https://doi.org/10.1149/1.1394012

    Article  Google Scholar 

  65. Li J, Yan D, Zhang W et al (2017) The investigation of Cr deposition and poisoning effect on Sr-doped lanthanum manganite cathode induced by cathodic polarization for intermediate temperature solid oxide fuel cell. Electrochim Acta 255:31–40. https://doi.org/10.1016/j.electacta.2017.09.112

    Article  CAS  Google Scholar 

  66. Wei B, Chen K, Zhao L et al (2015) Chromium deposition and poisoning at la 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes of solid oxide electrolysis cells. Phys Chem Chem Phys 17:1601–1609. https://doi.org/10.1039/c4cp05110f

    Article  CAS  PubMed  Google Scholar 

  67. Jiang SP, Zhang S, Zhen YD (2005) Deposition of Cr species at (La,Sr)(Co,Fe)O[sub 3] cathodes of solid oxide fuel cells. J Electrochem Soc 153:A127. https://doi.org/10.1149/1.2136077

    Article  CAS  Google Scholar 

  68. Wei B, Chen K, Wang CC et al (2015) Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3 - δ electrodes of solid oxide cells under open circuit condition. Solid State Ionics 281:29–37. https://doi.org/10.1016/j.ssi.2015.08.018

    Article  CAS  Google Scholar 

  69. Jiang SP, Chen X (2014) Chromium deposition and poisoning of cathodes of solid oxide fuel cells - A review. Int J Hydrog Energy 39:505–531. https://doi.org/10.1016/j.ijhydene.2013.10.042

    Article  CAS  Google Scholar 

  70. Amezawa K, Shindo Y, Fujimaki Y et al (2017) Mechanism of chromium poisoning in SOFC cathode investigated by using pattern thin film model electrode. ECS Trans 78:965–970. https://doi.org/10.1149/07801.0965ecst

    Article  CAS  Google Scholar 

  71. Krishnan S, Mahapatra MK, Singh P, Ramprasad R (2017) First principles study of Cr poisoning in solid oxide fuel cell cathodes: application to (La,Sr) CoO3. Comput Mater Sci 137:6–9. https://doi.org/10.1016/j.commatsci.2017.04.020

    Article  CAS  Google Scholar 

  72. Chen X, Zhang L, Liu E, Jiang SP (2011) A fundamental study of chromium deposition and poisoning at (La 0.8Sr0.2)0.95(Mn1-xCo x)O3 ± δ (0.0≤ x ≤1.0) cathodes of solid oxide fuel cells. Int J Hydrog Energy 36:805–821. https://doi.org/10.1016/j.ijhydene.2010.09.087

    Article  CAS  Google Scholar 

  73. Horita T, Xiong Y, Kishimoto H et al (2010) Chromium poisoning and degradation at (La,Sr)MnO and (La,Sr)FeO[sub 3] cathodes for solid oxide fuel cells. J Electrochem Soc 157:B614. https://doi.org/10.1149/1.3322103

    Article  CAS  Google Scholar 

  74. Bevilacqua M, Fornasiero P, Vohs JM et al (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753

    Article  CAS  Google Scholar 

  75. Huang B, Xing YF, Xu L, Tan X, Xu S, Zang HY, Wang YS (2018) Chromium poisoning and degradation at LaNi0.6Fe0.4O3 cathode with LaNi0.6Fe0.4O3–Gd0.2Ce0.8O2 functional layer for SOFC under open circuit condition. J Solid State Electrochem 22(1)

  76. Stodolny MK, Boukamp BA, Blank DHA, Van Berkel FPF (2011) Impact of Cr-poisoning on the conductivity of LaNi 0.6Fe 0.4O 3. J Power Sources 196:9290–9298. https://doi.org/10.1016/j.jpowsour.2011.07.070

    Article  CAS  Google Scholar 

  77. Yin X, Bencze L, Motalov V et al (2018) Thermodynamic perspective of Sr-related degradation issues in SOFCs. Int J Appl Ceram Technol 15:380–390. https://doi.org/10.1111/ijac.12809

    Article  CAS  Google Scholar 

  78. Chen Y, Yoo S, Li X et al (2018) An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy 47:474–480. https://doi.org/10.1016/j.nanoen.2018.03.043

    Article  CAS  Google Scholar 

  79. Zhao L, Drennan J, Kong C, Sudath Amarasinghe SPJ (2013) Surface segregation and chromium deposition and poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Electrochem Soc 57:599–604

    Google Scholar 

  80. Transactions ECS, Society TE (2013) Influence of cathode polarization on the chromium poisoning of SOFC cathodes consisting of LSM. LSCF and LNF Eunjoo Park 50:21–25

    Google Scholar 

  81. Schiemann K, Vibhu V, Yildiz S et al (2017) Chrome poisoning of non-manganiferous cathode materials in solid oxide fuel cells (SOFCs). ECS Trans 78:1027–1034. https://doi.org/10.1149/07801.1027ecst

    Article  CAS  Google Scholar 

  82. Matsuzaki Y, Yasuda I (2002) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148:A126. https://doi.org/10.1149/1.1339869

    Article  Google Scholar 

  83. Hu B, Krishnan S, Liang C et al (2017) Experimental and thermodynamic evaluation of La1−xSrxMnO3±Δ and La1−xSrxCo1−yFeyO3−Δ cathodes in Cr-containing humidified air. Int J Hydrog Energy 42:10208–10216. https://doi.org/10.1016/j.ijhydene.2017.01.040

    Article  CAS  Google Scholar 

  84. Zekri A, Schnetger B, Essafi A, Plaggenborg T, Parisi J, Knipper M (2017) Microstructure Degradation of LSM / YSZ Cathodes for Solid Oxide Fuel Cells Aged in Stack after Long Operation Time. The Electrochemical Soc. 164(13):1385–1391

    Article  CAS  Google Scholar 

  85. Miyoshi K, Iwai H, Kishimoto M et al (2016) Chromium poisoning in (La,Sr)MnO3 cathode: three-dimensional simulation of a solid oxide fuel cell. J Power Sources 326:331–340. https://doi.org/10.1016/j.jpowsour.2016.06.110

    Article  CAS  Google Scholar 

  86. Wang CC, Becker T, Chen K et al (2014) Effect of temperature on the chromium deposition and poisoning of La 0.6Sr0.4Co0.2Fe0.8O 3-δ cathodes of solid oxide fuel cells. Electrochim Acta 139:173–179. https://doi.org/10.1016/j.electacta.2014.07.028

    Article  CAS  Google Scholar 

  87. Xiong C, Taillon JA, Pellegrinelli C et al (2016) Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures. J Electrochem Soc 163:F1091–F1099. https://doi.org/10.1149/2.0841609jes

    Article  CAS  Google Scholar 

  88. Wang R, Würth M, Pal UB et al (2017) Roles of humidity and cathodic current in chromium poisoning of Sr-doped LaMnO3-based cathodes in solid oxide fuel cells. J Power Sources 360:87–97. https://doi.org/10.1016/j.jpowsour.2017.06.005

    Article  CAS  Google Scholar 

  89. Chen X, Zhen Y, Li J, Jiang SP (2010) Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+δ cathodes of solid oxide fuel cells. Int J Hydrog Energy 35:2477–2485. https://doi.org/10.1016/j.ijhydene.2009.12.185

    Article  CAS  Google Scholar 

  90. Wang R, Pal UB, Gopalan S, Basu SN (2017) Chromium poisoning effects on performance of (La,Sr)MnO 3 -based cathode in anode-supported solid oxide fuel cells. J Electrochem Soc 164:F740–F747. https://doi.org/10.1149/2.0441707jes

    Article  CAS  Google Scholar 

  91. Wang R, Mo B, Würth M, Pal UB, Gopalan S, SNB (2018) Chapter 6-“Estimation of polarization loss due to chromium poisoning of LSM based cathodes in solid oxide fuel cells.” Ceramic Engineering and Science Proceedings, The American Ceramic Soc

  92. Park E, Taniguchi S, Daio T et al (2014) Influence of cathode polarization on the chromium deposition near the cathode/electrolyte interface of SOFC. Int J Hydrog Energy 39:1463–1475. https://doi.org/10.1016/j.ijhydene.2013.11.030

    Article  CAS  Google Scholar 

  93. Li G, Von Spakovsky MR, Shen F, Lu K (2018) Multiscale transient and steady-state study of the influence of microstructure degradation and chromium oxide poisoning on solid oxide fuel cell cathode performance. J Non-Equilibrium Thermodyn 43:21–42. https://doi.org/10.1515/jnet-2017-0013

    Article  CAS  Google Scholar 

  94. Horita T, Cho DH, Wang F et al (2012) Correlation between degradation of cathode performance and chromium concentration in (La,Sr)MnO 3 cathode. Solid State Ionics 225:151–156. https://doi.org/10.1016/j.ssi.2012.02.048

    Article  CAS  Google Scholar 

  95. Do-Hyung C, Haruo K, Brito ME, Katsuhiko Y, Mina N, Taro S, Fangfang W, Yokokawa H, Horita T (2013) Cathode performance and deposited Cr under Cr poisoning condition in the (La0.6Sr0.4)(Co0.2Fe0.8)O3 cathode. Electrochem Soc 50:125–131

    Google Scholar 

  96. Singheiser L, Huczkowski P, Markus T, Quadakkers WJ (2010). Chapter-“High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells”, Shreir’s Corrosion, Volume 1, Elsevier Publications

  97. Zhao L, Amarasinghe S, Jiang SP (2013) Enhanced chromium tolerance of La0.6Sr0.4Co 0.2Fe0.8O3 - δ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation. Electrochem Commun 37:84–87. https://doi.org/10.1016/j.elecom.2013.10.019

    Article  CAS  Google Scholar 

  98. Zhao L, Amarasinghe S, Jiang SP (2013) Enhanced chromium tolerance of Gd0.1Ce0.9O1.95 impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ electrode of solid oxide fuel cells. Electrochem Soc 57:2163–2173

    Google Scholar 

  99. Wang R, Sun Z, Lu Y et al (2017) Chromium poisoning of cathodes in solid oxide fuel cells and its mitigation employing CuMn 1.8 O 4 spinel coatings on interconnects. ECS Trans 78:1665–1674. https://doi.org/10.1149/07801.1665ecst

    Article  CAS  Google Scholar 

  100. Wang R, Sun Z, Pal UB et al (2018) Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect. J Power Sources 376:100–110. https://doi.org/10.1016/j.jpowsour.2017.11.069

    Article  CAS  Google Scholar 

  101. Uddin MA, Aphale AN, Hu B et al (2017) In-cell chromium Getters to mitigate cathode poisoning in SOFC stack. ECS Trans 78:1039–1046. https://doi.org/10.1149/07801.1039ecst

    Article  CAS  Google Scholar 

  102. Uddin MA, Aphale A, Hu B et al (2017) Electrochemical validation of in-cell chromium getters to mitigate chromium poisoning in SOFC stack. J Electrochem Soc 164:F1342–F1347. https://doi.org/10.1149/2.0421713jes

    Article  CAS  Google Scholar 

  103. Lee J-H, Kim H, Yoon KJ et al (2017) Suppression of chromium poisoning in SOFC cathode using chromium trapping materials. ECS Trans 78:1035–1038. https://doi.org/10.1149/07801.1035ecst

    Article  CAS  Google Scholar 

  104. Yokokawa H, Horita T, Yamaji K et al (2013) Chromium poisoning of LaMnO3-based cathode within generalized approach. Fuel Cells 13:526–535. https://doi.org/10.1002/fuce.201200164

    Article  CAS  Google Scholar 

  105. Wang CC, Darvish S, Chen K et al (2019) Combined Cr and S poisoning of La 0.8 Sr 0.2 MnO 3-δ (LSM)cathode of solid oxide fuel cells. Electrochim Acta 312:202–212. https://doi.org/10.1016/j.electacta.2019.04.116

    Article  CAS  Google Scholar 

  106. Park JH, Han SM, Kim BK, Lee JH, Yun KJ, Kim H, Ji H, Son J (2019) Sintered powder-base cathode over vacuum-deposited thin-film electrolyte of low- temperature solid oxide fuel cell: Performance and stability. Electrochimica Acta 296:1055–1063

    Article  CAS  Google Scholar 

  107. Mason JH, Celik IB, Lee S et al (2017) Prediction of performance degradation due to grain coarsening effects in solid oxide fuel cells. ECS Trans 78:2323–2336. https://doi.org/10.1149/07801.2323ecst

    Article  CAS  Google Scholar 

  108. Oh D, Gostovic D, Wachsman ED (2012) Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. Journal of Materials Research 27(15):1992–1999

    Article  CAS  Google Scholar 

  109. Online VA, Ding H, Virkar AV et al (2013) Suppression of Sr surface segregation in La1?xSrxCo1?yFeyO3?d: a first principles study. PCCP 15:489–496. https://doi.org/10.1039/c2cp43148c

    Article  CAS  Google Scholar 

  110. Wang H, Sumi H, Barnett SA (2018) Effect of high-temperature ageing on (La,Sr)(Co,Fe)O3-δ cathodes in microtubular solid oxide fuel cells. Solid State Ionics 323:85–91. https://doi.org/10.1016/j.ssi.2018.05.019

    Article  CAS  Google Scholar 

  111. Egger A, Perz M, Bucher E, Gspan C, Sitte W (2019) Effect of Microstructure on the Degradation of La0.6Sr0.4CoO3–δ Electrodes in Dry and Humid Atmospheres, presented at the 13th EUROPEAN SOFC & SOE Forum (EFCF2018), July 3–6, 2018 held in Lucerne, Switzerland. Organized by the European Fuel Cells Forum

  112. Chen M, Ovtar S, Hauch A, Veltz S (2018) Comparison between La0.6Sr0.4CoO3-d and LaNi0.6Co0.4O3-d infiltrated oxygen electrodes for longterm durable solid oxide fuel cells. Electrochimica Acta 266:293–304

    Article  CAS  Google Scholar 

  113. De Vero JC, Bagarinao KD, Ishiyama T, Kishimoto H, Yamaji K, Horita T, Yokokawa H (2018) Elucidating the Degradation Mechanism at the Cathode-Interlayer Interfaces of Solid Oxide Fuel Cells. Journal of Electrochemical Society 165(16):1340–1348

    Article  CAS  Google Scholar 

  114. Santos GL, Porras JM, Losilla ER, Martin F, Barrado JR, Lopez DM (2017) Stability and performance of La0.6Sr0.4Co0.2Fe0.8O3-d nanostructured cathodes with Ce0.8Gd0.2O1.9 surface coating. Journal of Power Sources 347:178–185

    Article  CAS  Google Scholar 

  115. Morales M, Morata A, Morel B, Montinaro D, Hubert M, Sanchez DF, Joud FL (2017) Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions. Electrochimica Acta. 241:459–476

    Article  CAS  Google Scholar 

  116. Transactions ECS, Society TE (2017) Solid oxide cell degradation operated in fuel cell and electrolysis modes: a comparative study on Ni agglomeration and LSCF destabilization M. Hubert. 78:3167–3177

    Google Scholar 

  117. Ascolani-Yael J, Montenegro-Hernández A, Troiani H, Mogni L, Caneiro A (2017) Study of the rate limiting steps and degradation of a GDC impregnated La0.6Sr0.4Co0.8Fe0.2O3-δ cathode. Electrochem Soc 78:795–805

    CAS  Google Scholar 

  118. Uhlenbruck S, Jordan N, Sebold D et al (2007) Thin film coating technologies of ( Ce , Gd ) O 2- δ interlayers for application in ceramic hightemperature fuel cells. Thin Solid Films 515(7-8):4053–4060

    Article  CAS  Google Scholar 

  119. Fan ESC, Kuhn J, Kesler O (2016) In fluence of carbon black pore former on performance and degradation. J Power Sources 316:72–84. https://doi.org/10.1016/j.jpowsour.2016.02.075

    Article  CAS  Google Scholar 

  120. Roeder JF, Golalikhani M, Zeberoff AF, Van Buskirk PC, Torabi A, Barton JM, Willman CM, Ghezel-Ayagh H, Wen Y, Huang K (2017) Group IVA oxide surface modification of LSCF cathode powders by atomic layer deposition. Electrochem Soc 78:935–942

    CAS  Google Scholar 

  121. Soldati A, Neto ET, Troiani HE, Baque L, Schreiber A, Serquis A (2016) Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3-d cathodes due to aging- induced changes in surface chemistry. J Power Sources 337:1–7

    Google Scholar 

  122. Matsui T, Komoto M, Muroyama H, Kishida K (2016) Degradation factors in ( La , Sr )( Co , Fe ) O 3- d cathode / Sm 2 O 3 e CeO 2 interlayer / Y 2 O 3 e ZrO 2 electrolyte system during operation of solid oxide fuel cells. J Power Sources 312:80–85. https://doi.org/10.1016/j.jpowsour.2016.02.052

    Article  CAS  Google Scholar 

  123. Ni N, Cooper SJ, Williams REA et al (2016) Oxide fuel cell cathodes at the nanometre scale and below cell cathodes at the nanometre scale and below. Appl Mater Interfaces 95:0–32. https://doi.org/10.1021/acsami.6b05290

    Article  CAS  Google Scholar 

  124. Na N, Wang CC, Jiang SP, Skinner SJ (2019) Synergistic effects of temperature and polarization on Cr poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ Solid Oxide Fuel Cell Cathodes. Journal of Material Chemistry A 7(15):9253–9262

    Article  Google Scholar 

  125. Harris J, Yan Y, Bateni R, Kesler O (2016) Degradation of La0.6Sr0.4Co0.2Fe0.8O3–d– Ce0.8Sm0.2O1.9 Cathodes on Coated and Uncoated Porous Metal Supports. Fuel Cells 16(3):319–329

    Article  CAS  Google Scholar 

  126. Shimada H, Yamaguchi T, Sumi H et al (2017) Extremely fi ne structured cathode for solid oxide fuel cells using Sr-doped LaMnO 3 and Y 2 O 3 -stabilized ZrO 2 nano-composite powder synthesized by spray pyrolysis. J Power Sources 341:280–284. https://doi.org/10.1016/j.jpowsour.2016.12.002

    Article  CAS  Google Scholar 

  127. Yan A, Cheng M, Dong Y et al (2006) Investigation of a Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- δ based cathode IT-SOFC. I. The effect of CO 2 on the cell performance. Appl Catal B Environ 66:64–71. https://doi.org/10.1016/j.apcatb.2006.02.021

    Article  CAS  Google Scholar 

  128. Efimov K, Klande T, Juditzki N, Feldhoff A (2012) Ca-containing CO 2-tolerant perovskite materials for oxygen separation. J Membr Sci 389:205–215. https://doi.org/10.1016/j.memsci.2011.10.030

    Article  CAS  Google Scholar 

  129. Chen Y, Yoo S, Choi Y et al (2018) A highly active, CO 2 -tolerant electrode for the oxygen reduction reaction. Energy Environ Sci 11:2458–2466. https://doi.org/10.1039/c8ee01140k

    Article  CAS  Google Scholar 

  130. Li J, Zhang Q, Qiu P et al (2017) A CO2-tolerant La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δcathode for intermediate temperature solid oxide fuel cells. J Power Sources 342:623–628. https://doi.org/10.1016/j.jpowsour.2016.12.106

    Article  CAS  Google Scholar 

  131. Yang Z, Liu Y, Chen Y et al (2017) Effects of humidity on Ba0.9Co0.7Fe0.2Nb0.1O3−Δ cathode performance and durability of solid oxide fuel cells. Int J Hydrog Energy 42:6997–7002. https://doi.org/10.1016/j.ijhydene.2016.11.045

    Article  CAS  Google Scholar 

  132. Wang J, Yang Z, Yang K et al (2018) Chromium deposition and poisoning on Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode of solid oxide fuel cells. Electrochim Acta 289:503–515. https://doi.org/10.1016/j.electacta.2018.08.092

    Article  CAS  Google Scholar 

  133. Li J, Li J, Yan D et al (2018) Promoted Cr-poisoning tolerance of La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells. Electrochim Acta 270:294–301. https://doi.org/10.1016/j.electacta.2018.03.053

    Article  CAS  Google Scholar 

  134. Zhang Z, Chen D, Dong F et al (2016) Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. J Membr Sci 519:11–21. https://doi.org/10.1016/j.memsci.2016.07.043

    Article  CAS  Google Scholar 

  135. Chen W, Chen CS, Winnubst L (2011) Ta-doped SrCo0.8Fe0.2O3-δ membranes: phase stability and oxygen permeation in CO2 atmosphere. Solid State Ionics 196:30–33. https://doi.org/10.1016/j.ssi.2011.06.011

    Article  CAS  Google Scholar 

  136. Zhang Y, Yang G, Chen G et al (2016) Evaluation of the CO 2 poisoning effect on a highly active cathode SrSc 0.175 Nb 0.025 Co 0.8 O 3-δ in the oxygen reduction reaction. ACS Appl Mater Interfaces 8:3003–3011. https://doi.org/10.1021/acsami.5b09780

    Article  CAS  PubMed  Google Scholar 

  137. Zhu Y, Zhou W, Chen Y, Shao Z (2016) An Aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells. Angew Chem Int Ed 55:8988–8993. https://doi.org/10.1002/anie.201604160

    Article  CAS  Google Scholar 

  138. Chen K, Hyodo J, O’Donnell KM et al (2014) Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells. J Electrochem Soc 161:F1163–F1170. https://doi.org/10.1149/2.0251412jes

    Article  CAS  Google Scholar 

  139. Yáng Z, Harvey AS, Gauckler LJ (2009) Influence of CO2 on Ba0.2Sr0.8Co0.8Fe0.2O3-δ at elevated temperatures. Scr Mater 61:1083–1086. https://doi.org/10.1016/j.scriptamat.2009.08.039

    Article  CAS  Google Scholar 

  140. Lee S, Choi J, Shin D (2018) Microstructural stability of SSC fibrous cathode with embedded SDC particles for solid oxide fuel cells operating on hydrogen. Int J Hydrog Energy 43:11372–11377. https://doi.org/10.1016/j.ijhydene.2018.03.041

    Article  CAS  Google Scholar 

  141. Madi H, Lanzini A, Papurello D et al (2016) Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments. J Power Sources 326:349–356. https://doi.org/10.1016/j.jpowsour.2016.07.003

    Article  CAS  Google Scholar 

  142. Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: Investigations into the effect of operational temperature and HCl concentration. J Power Sources 169:347–354. https://doi.org/10.1016/j.jpowsour.2007.03.018

    Article  CAS  Google Scholar 

  143. Marina OA, Pederson LR, Thomsen EC, Coyle CA, Yoon KJ (2010) Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas. J Power Sources 195:7033–7037

    Article  CAS  Google Scholar 

  144. Xu C, Gong M, Zondlo JW et al (2010) The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells. J Power Sources 195:2149–2158. https://doi.org/10.1016/j.jpowsour.2009.09.079

    Article  CAS  Google Scholar 

  145. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  146. Hagen A, Rasmussen JFB, Thydén K (2011) Durability of solid oxide fuel cells using sulfur containing fuels. J Power Sources 196:7271–7276. https://doi.org/10.1016/j.jpowsour.2011.02.053

    Article  CAS  Google Scholar 

  147. Haga K, Adachi S, Shiratori Y et al (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431. https://doi.org/10.1016/j.ssi.2008.02.062

    Article  CAS  Google Scholar 

  148. Vahc ZY, Jung CY, Yi SC (2014) Performance degradation of solid oxide fuel cells due to sulfur poisoning of the electrochemical reaction and internal reforming reaction. Int J Hydrog Energy 39:17275–17283. https://doi.org/10.1016/j.ijhydene.2014.08.064

    Article  CAS  Google Scholar 

  149. Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289–298. https://doi.org/10.1016/j.jpowsour.2007.03.026

    Article  CAS  Google Scholar 

  150. Sasaki K, Susuki K, Iyoshi A et al (2006) H[sub2]S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023. https://doi.org/10.1149/1.2336075

    Article  CAS  Google Scholar 

  151. Hauch A, Hagen A, Hjelm J, Ramos T (2014) Sulfur poisoning of SOFC anodes: effect of overpotential on long-term degradation. J Electrochem Soc 161:F734–F743. https://doi.org/10.1149/2.080406jes

    Article  CAS  Google Scholar 

  152. Khan MS, Lee S-B, Song R-H et al (2016) Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: a review. Ceram Int 42:35–48. https://doi.org/10.1016/j.ceramint.2015.09.006

    Article  CAS  Google Scholar 

  153. Matsuzaki Y (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics 132:261–269. https://doi.org/10.1016/s0167-2738(00)00653-6

    Article  CAS  Google Scholar 

  154. Brightman E, Ivey DG, Brett DJL, Brandon NP (2011) The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes. J Power Sources 196:7182–7187. https://doi.org/10.1016/j.jpowsour.2010.09.089

    Article  CAS  Google Scholar 

  155. Yoshizumi T, Taniguchi S, Shiratori Y, Sasaki K (2012) Sulfur poisoning of sofcs: voltage oscillation and Ni oxidation. J Electrochem Soc 159:F693–F701. https://doi.org/10.1149/2.032211jes

    Article  CAS  Google Scholar 

  156. Hwang B, Kwon H, Ko J et al (2018) Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying. Appl Surf Sci 429:87–94. https://doi.org/10.1016/j.apsusc.2017.06.164

    Article  CAS  Google Scholar 

  157. Malyi OI, Chen Z, Kulish VV et al (2013) Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces. Appl Surf Sci 264:320–328. https://doi.org/10.1016/j.apsusc.2012.10.021

    Article  CAS  Google Scholar 

  158. Niakolas DK, Neofytidis CS, Neophytides SG (2017) Effect of Au and/or Mo doping on the development of carbon and sulfur tolerant anodes for SOFCs—a short review. Front Environ Sci 5:1–20. https://doi.org/10.3389/fenvs.2017.00078

    Article  Google Scholar 

  159. Chen K, Jiang SP (2016) Review—materials degradation of solid oxide electrolysis cells. J Electrochem Soc 163:F3070–F3083. https://doi.org/10.1149/2.0101611jes

    Article  CAS  Google Scholar 

  160. Boccaccini DN, Frandsen HL, Soprani S et al (2018) Influence of porosity on mechanical properties of tetragonal stabilized zirconia. J Eur Ceram Soc 38:1720–1735. https://doi.org/10.1016/j.jeurceramsoc.2017.09.029

    Article  CAS  Google Scholar 

  161. Chen T, Wang WG, Miao H et al (2011) Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J Power Sources 196:2461–2468. https://doi.org/10.1016/j.jpowsour.2010.11.095

    Article  CAS  Google Scholar 

  162. Singh A, Hill JM (2012) Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. J Power Sources 214:185–194. https://doi.org/10.1016/j.jpowsour.2012.04.062

    Article  CAS  Google Scholar 

  163. Steiger P, Burnat D, Madi H et al (2019) Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel. Chem Mater 31:748–758. https://doi.org/10.1021/acs.chemmater.8b03669

    Article  CAS  Google Scholar 

  164. Li W, Shi Y, Luo Y et al (2015) Carbon deposition on patterned nickel / yttria stabilized zirconia electrodes for solid oxide fuel cell / solid oxide electrolysis cell modes. J Power Sources 276:26–31. https://doi.org/10.1016/j.jpowsour.2014.11.106

    Article  CAS  Google Scholar 

  165. Chen Y, Chen S, Hackett G et al (2013) Microstructure degradation of YSZ in Ni / YSZ anodes of SOFC operated in phosphine-containing fuels. Solid State Ionics 234:25–32. https://doi.org/10.1016/j.ssi.2012.12.019

    Article  CAS  Google Scholar 

  166. Kim J-W (1999) Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J Electrochem Soc 146:69. https://doi.org/10.1149/1.1391566

    Article  CAS  Google Scholar 

  167. Wang W, Zhu C, Xie K, Gan L (2018) High performance, coking-resistant and sulfur-tolerant anode for solid oxide fuel cell. J Power Sources 406:1–6. https://doi.org/10.1016/j.jpowsour.2018.10.040

    Article  CAS  Google Scholar 

  168. Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323. https://doi.org/10.1038/nmat871

    Article  CAS  PubMed  Google Scholar 

  169. Sun Y-F, Li J-H, Cui L et al (2015) A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst. Nanoscale 7:11173–11181. https://doi.org/10.1039/c5nr02518d

    Article  CAS  PubMed  Google Scholar 

  170. Kim KI, Kim HS, Kim HS, Yun JW (2018) H2S tolerance effects of Ce0.8Sm0.2O2−δ modification on Sr0.92Y0.08Ti1−xNixO3−δ anode in solid oxide fuel cells. J Ind Eng Chem 68:187–195. https://doi.org/10.1016/j.jiec.2018.07.045

    Article  CAS  Google Scholar 

  171. Gorte RJ, Kim H, Vohs JM (2002) Novel SOFCs anode for the direct electrochemical oxidation by hydrocarbon. J Power Sources 10:1–2

    Google Scholar 

  172. Devianto H, Yoon SP, Nam SW, Han J, Lim TH (2006) The effect of a ceria coating on the H2S tolerance of a molten carbonate fuel cell. J Power Sources 159:1147

    Article  CAS  Google Scholar 

  173. He H, Gorte RJ, Vohs JM (2005) Highly sulfur tolerant Cu-Ceria anodes for SOFCs. Electrochem Solid-State Lett 8:A279

    Article  CAS  Google Scholar 

  174. Jeong Myeong Lee JWY (2016) Characteristics of Sr0.92 Y0.08 Ti0.7 Fe0.3 O3-δ anode running on humidified methane fuel in solid oxide fuel cells. Ceram Int 42:8698–8705

    Article  CAS  Google Scholar 

  175. Zeng Z, Natesan K (2004) Corrosion of metallic interconnects for SOFC in fuel gases. Solid State Ionics 167:9–16. https://doi.org/10.1016/j.ssi.2003.11.026

    Article  CAS  Google Scholar 

  176. Brylewski T, Nanko M, Maruyama T, Przybylski K (2001) Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics 143:131–150. https://doi.org/10.1016/S0167-2738(01)00863-3

    Article  CAS  Google Scholar 

  177. Huang K, Hou PY, Goodenough JB (2001) Reduced area specific resistance for iron-based metallic interconnects by surface oxide coatings. Mater Res Bull 36:81–95. https://doi.org/10.1016/S0025-5408(01)00506-2

    Article  CAS  Google Scholar 

  178. Masi A, Frangini S, Carlini M et al (2015) Evaluation of a novel perovskite-based conversion coating for corrosion protection of 13Cr ferritic stainless steels under relevant SOFC oxidizing conditions. ECS Trans 68:1625–1632. https://doi.org/10.1149/06801.1625ecst

    Article  CAS  Google Scholar 

  179. Masi A, Frangini S, Pumiglia D et al (2017) LaFeO3 perovskite conversion coatings grown on a 13Cr ferritic stainless steel: a corrosion degradation study in simulated solid oxide fuel cell (SOFC) interconnect conditions at 700 °C. Mater Corros 68:536–545. https://doi.org/10.1002/maco.201609177

    Article  CAS  Google Scholar 

  180. Kidner NJ, Ibanez S, Seabaugh MM, Swartz SL (2017) Advances in low temperature coatings for solid oxide fuel cell components. ECS Trans 78:1897–1901

    Article  CAS  Google Scholar 

  181. Ma J, Duan N, Han Y et al (2018) Hot corrosion of Gd 2 O 3 -doped CeO 2 electrolyte in solid oxide fuel cells with a liquid antimony anode. J Power Sources 401:397–402. https://doi.org/10.1016/j.jpowsour.2018.08.083

    Article  CAS  Google Scholar 

  182. Jhuang JW, Lee KR, Kuei CJ et al (2017) Chemical stability and electrical and mechanical properties of BaZrxCe0.8-xY0.2O3 with CeO2 protection method. Int J Hydrog Energy 42:22259–22265. https://doi.org/10.1016/j.ijhydene.2017.03.126

    Article  CAS  Google Scholar 

  183. Steiger P, Burnat D, Madi H, Mai A, Holzer L, Herle JV, Krocher O, Heel A, Ferri D (2019) Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel. Chem. Mater. ACS publications 31(3):748–758

    CAS  Google Scholar 

  184. Tseng CJ, Chang JK, Hung IM, Lee KR, Lee SW (2014) BaZr0.2Ce0.8-xYxO3-δ solid oxide fuel cell electrolyte synthesized by sol-gel combined with composition-exchange method. Int J Hydrog Energy 39:4434–4440

    Article  CAS  Google Scholar 

  185. Lyagaeva YG, Medvedev DA, Denim AK, Tsiakaras PRO (2015) Thermal expansion of materials in the barium cerate-zircoate system. Phys Solid State 57:285–289

    Article  CAS  Google Scholar 

  186. Lee SW, Tseng CJ, Chang JK, Lee KR, Chen CT, Hung IM et al (2014) Synthesis and characterization of Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ proton-conducting oxides for use as fuel cell electrolyte. J Alloys Compd 586:S506–S510

    Article  CAS  Google Scholar 

  187. Gasper P, Lu Y, Basu SN, Gopalan S, Pal UB (2019) Effect of anodic current density on the spreading of infiltrated nickel nanoparticles in nickelyttria stabilized zirconia cermet anodes. J Power Sources 410–411(15-31):196–203

    Article  CAS  Google Scholar 

  188. Yoshikawa M, Yamamoto T, Yasumoto K, Mugikura Y (2017) Degradation analysis of SOFC stack performance: investigation of cathode sulfur poisoning due to contamination in air. Electrochem Soc 75:23–31

    CAS  Google Scholar 

  189. Thambiraj N, Suciu C, Waernhus I, Arild Vik ACH (2017) SOFC cathode degradation due to salt contamination. Electrochem Soc 78:915–925

    CAS  Google Scholar 

  190. Wang J, Yang Z, Lv Y et al (2019) Effect of CO2 on La0.4Sr0.6Co0.2Fe0.7Nb0.103-d cathode for solid oxide fuel cells. J Electroanal Chem 847:113256. https://doi.org/10.1016/j.jelechem.2019.113256

    Article  CAS  Google Scholar 

  191. Li M, Hua B, Jiang SP, Li J (2017) Coke Resistant and Sulfur Tolerant Ni-based Cermet Anodes for Solid Oxide Fuel Cells. ECS Trans 78(1):1217–1228

    Article  CAS  Google Scholar 

  192. Garcés D, Wang H, Barnett SA, Leyva AG, Mogni LV (2017) Study of the mechanisms of O2-reduction and degradation operating on La0.5-XPrxBa0.5CoO3-δ cathodes for SOFCs. Electrochem Soc 78:1011–1020

    Google Scholar 

  193. Yang Z, Liu Y, Zhu T et al (2016) Mechanism analysis of CO2 corrosion on Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode. Int J Hydrog Energy 41:1997–2001. https://doi.org/10.1016/j.ijhydene.2015.11.095

    Article  CAS  Google Scholar 

  194. Lai KYK-Y, Manthiram A (2019) CO 2 -tolerant (Y,Tb)Ba(Co,Ga) 4 O 7 cathodes with low thermal expansion for solid oxide fuel cells. J Mater Chem A 7:8540–8549. https://doi.org/10.1039/c9ta01338e

    Article  CAS  Google Scholar 

  195. Stenzel A, Fähsing D, Schütze M, Galetz MC (2019) Volatilization kinetics of chromium oxide, manganese oxide, and manganese chromium spinel at high temperatures in environments containing water vapor. https://doi.org/10.1002/maco.201810655

  196. Jiao Z, Shikazono N (2018) In operando optical study of active three phase boundary of nickel-yttria stabilized zirconia solid-oxide fuel cell anode under polarization. J Power Sources 396:119–123

    Article  CAS  Google Scholar 

  197. Lee T, Park K, Kim N et al (2016) degradation prevention operating logic for intermediate temperature- solid oxide fuel cells. J Power Sources 331:495–506. https://doi.org/10.1016/j.jpowsour.2016.09.080

    Article  CAS  Google Scholar 

  198. Ding D, Li X, Lai Y, Liu M (2014) Environmental Science Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575. https://doi.org/10.1039/c3ee42926a

    Article  CAS  Google Scholar 

  199. Klande T, Ravkina O, Feldhoff A (2013) Effect of A-site lanthanum doping on the CO2 tolerance of SrCo0.8Fe0.2O3—δ oxygen-transporting membranes. J Membr Sci 437:122–130. https://doi.org/10.1016/j.memsci.2013.02.051

    Article  CAS  Google Scholar 

  200. Zhu Y, Sunarso J, Zhou W, Shao Z (2015) Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9-xFexO3-δ cathodes for solid oxide fuel cells. Appl Catal B Environ 172–173:52–57. https://doi.org/10.1016/j.apcatb.2015.02.010

    Article  CAS  Google Scholar 

  201. Lu H, Kim JP, Son SH, Park JH (2011) Novel SrCo1-2x(Fe,Nb)xO3 - δ (x = 0.05, 0.10) oxides targeting CO2 capture and O2 enrichment: Structural stability and oxygen sorption properties. Mater Lett 65:2858–2860. https://doi.org/10.1016/j.matlet.2011.06.062

    Article  CAS  Google Scholar 

  202. Chen W, Sheng CC, Bouwmeester HJM et al (2014) Oxygen-selective membranes integrated with oxy-fuel combustion. J Membr Sci 463:166–172. https://doi.org/10.1016/j.memsci.2014.03.063

    Article  CAS  Google Scholar 

  203. Oncel C, Gulgun MA (2017) Preventing of LaNiO3 Formation at the LSGM-NiO Interface via LDC Protective Layer and Proper Processing Route for Solid Oxide Fuel Cells. The Electrochem Soc 78(1):413–427

    CAS  Google Scholar 

  204. Rasmussen JFBB, Hagen A (2009) The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells. J Power Sources 191:534–541. https://doi.org/10.1016/j.jpowsour.2009.02.001

    Article  CAS  Google Scholar 

  205. Khan MZ, Mehran MT, Song RH et al (2018) A simplified approach to predict performance degradation of a solid oxide fuel cell anode. J Power Sources 391:94–105. https://doi.org/10.1016/j.jpowsour.2018.04.080

    Article  CAS  Google Scholar 

  206. Lussier A, Sofie S, Dvorak J, Idzerda YU (2008) Mechanism for SOFC anode degradation from hydrogen sulfide exposure. Int J Hydrog Energy 33:3945–3951. https://doi.org/10.1016/j.ijhydene.2007.11.033

    Article  CAS  Google Scholar 

  207. Lee HS, Lee HM, Park JY, Lim HT (2018) Degradation behavior of Ni-YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration. Int J Hydrog Energy 43:22511–22518. https://doi.org/10.1016/j.ijhydene.2018.09.189

    Article  CAS  Google Scholar 

  208. Yang L, Cheng Z, Liu MWL (2010) New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs. Energy Environ Sci 3:1804e9

    Google Scholar 

  209. Li TSWW (2011) Sulfur-poisoned Ni-based solid oxide fuel cell anode characterization by varying water content. J Power Sources 196:2066–2069

    Article  CAS  Google Scholar 

  210. Dong J, Cheng Z, Zha S, Liu M (2006) Identification of nickel sulfides on Ni-YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy. J Power Sources 156:461–465. https://doi.org/10.1016/j.jpowsour.2005.06.016

    Article  CAS  Google Scholar 

  211. Riegraf M, Costa R, Schiller G, Friedrich KA (2017) Sulfur poisoning of Ni/CGO anodes: a long-term degradation study. ECS Trans 78:1285–1291. https://doi.org/10.1149/07801.1285ecst

    Article  CAS  Google Scholar 

  212. Chan SH, Jiang SP (2004) Development of Ni/Y 2 O 3 – ZrO 2 cermet anodes for solid oxide fuel cells. Mater Sci Technol 20:1109–1118

    Article  CAS  Google Scholar 

  213. Gasper P, Lu Y, Basu SN et al (2019) Effect of anodic current density on the spreading of infiltrated nickel nanoparticles in nickel-yttria stabilized zirconia cermet anodes. J Power Sources 410–411:196–203. https://doi.org/10.1016/j.jpowsour.2018.11.002

    Article  CAS  Google Scholar 

  214. Li M, Hua B, Jiang SP, Li J (2017) Coke resistant and sulfur tolerant Ni-based cermet anodes for solid oxide fuel cells. ECS Trans 78:1217–1228. https://doi.org/10.1149/07801.1217ecst

    Article  CAS  Google Scholar 

  215. Amiri S, Hayes RE, Sarkar P (2019) Evolution of electronic conductivity in a Ni/YSZ electrode fabricated by electrophoretic deposition. Can J Chem Eng 97:1114–1120. https://doi.org/10.1002/cjce.23339

    Article  CAS  Google Scholar 

  216. Iwanschitz B, Sfeir J, Mai A, Schütze M (2010) Degradation of SOFC Anodes upon redox cycling: a comparison between Ni/YSZ and Ni/CGO. J Electrochem Soc 157:B269–B278. https://doi.org/10.1149/1.3271101

    Article  CAS  Google Scholar 

  217. Pihlatie MH, Kaiser A, Mogensen M, Chen M (2011) Electrical conductivity of Ni-YSZ composites: degradation due to Ni particle growth. Solid State Ionics 189:82–90. https://doi.org/10.1016/j.ssi.2011.02.001

    Article  CAS  Google Scholar 

  218. Jiao Z, Shikazono N (2018) In operando optical study of active three phase boundary of nickel-yttria stabilized zirconia solid-oxide fuel cell anode under polarization. J Power Sources 396:119–123. https://doi.org/10.1016/j.jpowsour.2018.06.001

    Article  CAS  Google Scholar 

  219. Bertei A, Ruiz-Trejo E, Kareh K et al (2017) The fractal nature of the three-phase boundary: a heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes. Nano Energy 38:526–536. https://doi.org/10.1016/j.nanoen.2017.06.028

    Article  CAS  Google Scholar 

  220. Zekri A, Herbrig K, Knipper M et al (2017) Nickel depletion and agglomeration in SOFC anodes during long-term operation. Fuel Cells 17:359–366. https://doi.org/10.1002/fuce.201600220

    Article  CAS  Google Scholar 

  221. Hauch A, Brodersen K, Chen M, Mogensen MB (2016) Ni / YSZ electrodes structures optimized for increased electrolysis performance and durability. Solid State Ionics 293:27–36. https://doi.org/10.1016/j.ssi.2016.06.003

    Article  CAS  Google Scholar 

  222. Mah JCW, Muchtar A, Somalu MR, Ghazali MJ (2017) Metallic interconnects for solid oxide fuel cell : A review on protective coating and deposition techniques. Int J Hydrogen Energy 42(14):9219–9229

    Article  CAS  Google Scholar 

  223. Yuan K, Yu Y, Wu Y et al (2018) Plasma sprayed coatings for low-temperature SOFC and high temperature effects on Lix(Ni,Co)yO2 catalyst layers. Int J Hydrog Energy 43:12782–12788. https://doi.org/10.1016/j.ijhydene.2018.03.215

    Article  CAS  Google Scholar 

  224. Suboti V, Schluckner C, Stoeckl B et al (2018) Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation. Energy Convers Manag 178:343–354. https://doi.org/10.1016/j.enconman.2018.10.022

    Article  CAS  Google Scholar 

  225. Oncel C, Gulgun MA (2017) Preventing of LaNiO 3 formation at the LSGM-NiO interface via LDC protective layer and proper processing route for solid oxide fuel cells. Electrochem Soc 78:413–427

    CAS  Google Scholar 

  226. Kikuchi Y, Matsuda J, Tachikawa Y et al (2017) Degradation of SOFCs by various impurities: impedance spectroscopy and microstructural analysis. ECS Trans 78:1253–1260. https://doi.org/10.1149/07801.1253ecst

    Article  CAS  Google Scholar 

  227. Falk-Windisch H, Mertzidis I, Svensson JE, Froitzheim J (2015) Pre-coated Ce/Co-coated Steel: Mitigating Cr Vaporization, Increasing Corrosion Resistance at Competitive Cost. ECS Trans 68(1):1617–1623

    Article  CAS  Google Scholar 

  228. Liu JW, Liu X (2010) Recent development of SOFC metallic interconnect. J Mater Sci Technol 26:293–305

    Article  Google Scholar 

  229. Piccardo P, Amendola R, Fontana S et al (2009) Interconnect materials for next-generation solid oxide fuel cells. J Appl Electrochem 39:545–551. https://doi.org/10.1007/s10800-008-9743-8

    Article  CAS  Google Scholar 

  230. Zhu WZ, Deevi SC (2003) Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A 348:227–243. https://doi.org/10.1016/S0921-5093(02)00736-0

    Article  CAS  Google Scholar 

  231. Fergus JW (2005) Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A 397:271–283. https://doi.org/10.1016/j.msea.2005.02.047

    Article  CAS  Google Scholar 

  232. Chen Z, Wang L, Li F, Chou K (2014) Thermodynamic analysis of the corrosion of Fe-16Cr alloy interconnect of solid oxide fuel cell under various atmospheres. High Temp Mater Process 33:439–445. https://doi.org/10.1515/htmp-2013-0104

    Article  CAS  Google Scholar 

  233. Huan Y, Fan Y, Li Y et al (2018) Systematic effect of contaminations on IT-SOFCs cathode stability: a quantifiable correlation: versus cathode-side poisoning and protection. J Mater Chem A 6:5172–5184. https://doi.org/10.1039/c8ta00658j

    Article  CAS  Google Scholar 

  234. Horita T, Yamaji K, Xiong Y, Haruo Kishimoto NS, Yokokawa H (2004) Oxide scale formation of Fe–Cr alloys and oxygen diffusion in the scale. Solid State Ionics 175:157–163

    Article  CAS  Google Scholar 

  235. Goebel C, Alnegren P, Faust R, Svensson J, Froitzheim J (2018) The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere. Int J Hydrogen Energy 43(31):14665–14674

    Article  CAS  Google Scholar 

  236. Zeng Z, Natesan K (2003) Relationship of carbon crystallization to the metal-dusting mechanism of nickel. Chem Mater 15:872–878

    Article  CAS  Google Scholar 

  237. Falk-Windisch H, Ioannis Mertzidis J-ES, Froitzhem J (2015) Pre-coated Ce/Co-coated steel: mitigating Cr vaporization, increasing corrosion resistance at competitive cost. ECS Trans 68:1617–1623

    Article  CAS  Google Scholar 

  238. Folgner C, Sauchuk V, Megel S, Kusnezoff M, Mechaelis A (2017) Interconnect corrosion in steam containing fuel gas. ECS Trans 78:1543–1558

    Article  CAS  Google Scholar 

  239. Szymczewska D, Molin S, Chen M et al (2017) Corrosion study of ceria protective layer deposited by spray pyrolysis on steel interconnects. Ceram Eng Sci Proc 37:79–86. https://doi.org/10.1002/9781119320197.ch7

    Article  CAS  Google Scholar 

  240. Talic B, Molin S, Wiik K, Hendriksen PV, Lein HL (2017) Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J Power Sources 372(31):145–156

    Article  CAS  Google Scholar 

  241. Oum M, Andrews J, Steinberger-Wilckens R (2017) Modelling microstructural and chemical degradation of ferritic stainless steels for SOFC interconnects. Electrochem Soc 78:1565–1574

    CAS  Google Scholar 

  242. Alnegren P, Froitzheim J, Svensson J (2013) Degradation of ferritic steel interconnects in SOEC environments. Electrochem Soc 57:2261–2270

    Google Scholar 

  243. Quadakkers WJ, Piron-Abellan J, Shemet V, Singheiser L (2003) Metallic interconnectors for solid oxide fuel cells—a review. Mater High Temp 20:115–127. https://doi.org/10.3184/096034003782749071

    Article  CAS  Google Scholar 

  244. Alnegren P, Sattari M, Svensson J, Froitzheim J (2018) Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600–800 ° C. J Power Sources 392:129–138. https://doi.org/10.1016/j.jpowsour.2018.04.088

    Article  CAS  Google Scholar 

  245. Goebel C, Alnegren P, Faust R et al (2018) The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere. Int J Hydrog Energy 43:14665–14674. https://doi.org/10.1016/j.ijhydene.2018.05.165

    Article  CAS  Google Scholar 

  246. Shaigan N, Qu W, Ivey DG, Chen W (2010) A review of recent progress in coatings , surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources 195:1529–1542. https://doi.org/10.1016/j.jpowsour.2009.09.069

    Article  CAS  Google Scholar 

  247. Stevenson JW, Yang ZG, Xia GG et al (2013) Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J Power Sources 231:256–263. https://doi.org/10.1016/j.jpowsour.2013.01.033

    Article  CAS  Google Scholar 

  248. Mehran MT, Song R-H, Lee J-W et al (2017) Nano-oxide dispersed ferritic stainless steel for metallic interconnects of solid oxide fuel cells. ECS Trans 78:1575–1582. https://doi.org/10.1149/07801.1575ecst

    Article  CAS  Google Scholar 

  249. Molin S (2018) Evaluation of electrodeposited Mn-Co protective coatings on Crofer 22 APU steel. Int J Appl Ceram Technol 15:349–360. https://doi.org/10.1111/ijac.12816

    Article  CAS  Google Scholar 

  250. Talic B, Molin S, Wiik K et al (2017) Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J Power Sources 372:145–156. https://doi.org/10.1016/j.jpowsour.2017.10.060

    Article  CAS  Google Scholar 

  251. Molin S, Sabato AG, Javed H et al (2018) Co-deposition of CuO and Mn 1.5 Co 1.5 O 4 powders on Crofer22APU by electrophoretic method: structural, compositional modifications and corrosion properties. Mater Lett 218:329–333. https://doi.org/10.1016/j.matlet.2018.02.037

    Article  CAS  Google Scholar 

  252. Thaheem I, Woo D, Noh T, Lee TK (2018) Highly conductive and stable Mn1.35Co1.35Cu0.2Y0.1O4 spinel protective coating on commercial ferritic stainless steels for intermediate-temperature solid oxide fuel cell interconnect applications. Int J Hydrogen Energy 44(8):2493–4303

    Google Scholar 

  253. Froitzheim J, Canovic S, Nikumaa M, Sachitanand R, Johansson LG, Svensson JE (2012) Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. J Power Sources 220:217–227

    Article  CAS  Google Scholar 

  254. Canovic S, Froitzheim J, Sachitanand R et al (2013) Surface & coatings technology oxidation of Co- and Ce-nanocoated FeCr steels : a microstructural investigation. Surf Coat Technol 215:62–74. https://doi.org/10.1016/j.surfcoat.2012.08.096

    Article  CAS  Google Scholar 

  255. Ananyev MV, Solodyankin AA, Eremin VA, Farlenkov AS, Khodimchuk AV, Fetsov AV, Chernik AA, Yaskelychik AA, Ostanina TA, Zaikov YP (2018) Protective Coatings La – Mn – Cu – O for Stainless-Steel Interconnector 08Х17Т for SOFC , Obtained by the Electrocrystallization Method from Non-Aqueous Solutions. Russian Journal of nonferrous metals 59:102–110

    Article  Google Scholar 

  256. He H, Benhaddad S, Steedman D, Chen C, Krivy M (2017) MCO-coated interconnects for mitigation of Cr-poisoning in solid oxide fuel cells. Electrochem Soc 78:1583–1590

    CAS  Google Scholar 

  257. Sachitanand R, Sattari M, Svensson JE, Froitzheim J (2013) Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. Int J Hydrogen Energy 38(35):15328–15334

    Article  CAS  Google Scholar 

  258. Unal FA, Mat MD, Demir I et al (2015) Application of a coating mixture for solid oxide fuel cell interconnects. Int J Hydrog Energy 40:7689–7693. https://doi.org/10.1016/j.ijhydene.2015.03.031

    Article  CAS  Google Scholar 

  259. Molin S, Jasinski P, Mikkelsen L et al (2016) Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C. J Power Sources 336:408–418. https://doi.org/10.1016/j.jpowsour.2016.11.011

    Article  CAS  Google Scholar 

  260. Gannon P, Deibert M, White P, Smith R, Chen H, Priyantha W, Lucas J, Gorokhovsky V (2008) Advanced PVD protective coatings for SOFC interconnects. Int J Hydrogen Energy 33(14):3991–4000

    Article  CAS  Google Scholar 

  261. Zhu J, Lin Z (2018) Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions. Applied Energy 231:22–28

    Article  CAS  Google Scholar 

  262. Masi A, Frangini S, Carlini M, Masci A, McPhail J, Stephen (2015) Evaluation of a Novel Perovskite-Based Conversion Coating for Corrosion Protection of 13Cr Ferritic Stainless Steels under Relevant SOFC Oxidizing Conditions. ECS Trans volume MA2015-03, A-SOFC XIV

  263. Froitzheim J, Canovic S, Nikumaa M et al (2012) Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. J Power Sources 220:217–227. https://doi.org/10.1016/j.jpowsour.2012.06.092

    Article  CAS  Google Scholar 

  264. Kidner NJ, Ibanez S, Seabaugh MM, Swartz SL (2017) Advances in Low Temperature Coatings for Solid Oxide Fuel Cell Components. Fuelcellmaterials.com

  265. Ananyev MV, Solodyankin AA, Eremin VA, Farlenkov AS (2018) Protective coatings La – Mn – Cu – O for stainless-steel interconnector 08Х17Т for SOFC, obtained by the electrocrystallization method from non-aqueous solutions. Corros Prot Met 59:102–110. https://doi.org/10.3103/S1067821218010029

    Article  Google Scholar 

  266. Dessemond L, Djurado E, Muccillo ENS (2014) La0.7Sr0.3MnO3 − δ barrier for Cr2O3-forming SOFC interconnect alloy coated by electrostatic spray deposition. Surf Coat Technol 254:157–166

    Article  CAS  Google Scholar 

  267. Sachitanand R, Sattari M, Svensson JE, Froitzheim J (2013) Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. Int J Hydrog Energy 38:15328–15334. https://doi.org/10.1016/j.ijhydene.2013.09.044

    Article  CAS  Google Scholar 

  268. Huang K, Hou PY, Goodenough JB (2000) Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ionics 129:237–250. https://doi.org/10.1016/S0167-2738(99)00329-X

    Article  CAS  Google Scholar 

  269. Grünwald N, Sebold D, Sohn YJ et al (2017) Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells. J Power Sources 363:185–192. https://doi.org/10.1016/j.jpowsour.2017.07.072

    Article  CAS  Google Scholar 

  270. Gannon P, Deibert M, White P et al (2008) Advanced PVD protective coatings for SOFC interconnects. Int J Hydrog Energy 33:3991–4000. https://doi.org/10.1016/j.ijhydene.2007.12.009

    Article  CAS  Google Scholar 

  271. Zhu J, Lin Z (2018) Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions. Appl Energy 231:22–28. https://doi.org/10.1016/j.apenergy.2018.09.127

    Article  CAS  Google Scholar 

  272. Amendola R, Gannon PE, Sofie SW, Weisenstein AJ (2012) Interactions between metallic interconnects and ceramic electrodes in SOFC operating environments: air side. J Electrochem Soc 159:C476–C484. https://doi.org/10.1149/2.064211jes

    Article  CAS  Google Scholar 

  273. Dessemond L, Djurado E, Muccillo ENS (2014) Surface & coatings technology coated by electrostatic spray deposition. Surf Coat Technol 254:157–166. https://doi.org/10.1016/j.surfcoat.2014.06.005

    Article  CAS  Google Scholar 

  274. Ma J, Duan N, Han Y, Li P, Zhu B, Yan D, Chi B, Pu J, Li J (2019) Hot corrosion of yttria-stabilized zirconia by liquid antimony and antimony oxide. J Power Sources 434:226764

    Article  CAS  Google Scholar 

  275. Stange M, Denonville C, Larring Y et al (2017) Improvement of corrosion properties of porous alloy supports for solid oxide fuel cells. Int J Hydrog Energy 42:12485–12495. https://doi.org/10.1016/j.ijhydene.2017.03.170

    Article  CAS  Google Scholar 

  276. Zhong Z (2007) Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ionics 178(3-4):213–220

    Article  CAS  Google Scholar 

  277. Karczewski J, Dunst KJ, Jasinski P, Molin S (2015) Surface & coatings technology high temperature corrosion and corrosion protection of porous Ni22Cr alloys. Surf Coat Technol 261:385–390. https://doi.org/10.1016/j.surfcoat.2014.10.051

    Article  CAS  Google Scholar 

  278. Werner A, Skilbred B, Haugsrud R (2011) The effect of dual atmosphere conditions on the corrosion of Sandvik Sanergy HT. Int J Hydrog Energy 37:8095–8101. https://doi.org/10.1016/j.ijhydene.2011.10.096

    Article  CAS  Google Scholar 

  279. Bianco M, Tallgren J, Hong J et al (2019) Ex-situ experimental benchmarking of solid oxide fuel cell metal interconnects. J Power Sources 437:226900. https://doi.org/10.1016/j.jpowsour.2019.226900

    Article  CAS  Google Scholar 

  280. Ma J, Duan N, Han Y et al (2019) Hot corrosion of yttria-stabilized zirconia by liquid antimony and antimony oxide. J Power Sources 434:226764. https://doi.org/10.1016/j.jpowsour.2019.226764

    Article  CAS  Google Scholar 

  281. Yokokawa H, Kishimoto H, Shimonosono T, Yamaji K, Muramatsu M, Terada K, Yashiro K (2017) Simulation Technology on SOFC Durability with an Emphasis on Conductivity Degradation of ZrO2-base Electrolyte. J Electrochem Energy Conservation and Storage. 14(1):011004

    Article  CAS  Google Scholar 

  282. Nechache A, Boukamp BA, Cassir M, Ringuedé A (2019) Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis. J Solid State Electrochem 23:871–881

    Article  CAS  Google Scholar 

  283. Cao T, Cheng Y, Gorte RJ, Shi Y, Vohs M, Cai N (2017) Effect of grain boundary diffusion on electrolyte stability indirect carbon fuel cells with antimony anodes. Ceram Int. 43(18):16575–16579

    Article  CAS  Google Scholar 

  284. Nechache A, Boukamp BA, Cassir M, Ringuedé A (2019) Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis. J Solid State Electrochem 23:871–881

    Article  CAS  Google Scholar 

  285. Cao T, Cheng Y, Gorte RJ, et al (2017) Effect of grain boundary di ff usion on electrolyte stability in direct carbon fuel cells with antimony anodes. Ceram Int 0–1. https://doi.org/10.1016/j.ceramint.2017.09.045

  286. Haanappel VAC, Duran A, Rodriguez-Lopez S et al (2016) Glass-ceramic seals in the system MgO e BaO-B2O3-SiO2 operating under simulated SOFC conditions. Int J Hydrog Energy 1:15335–15345. https://doi.org/10.1016/j.ijhydene.2016.07.051

    Article  CAS  Google Scholar 

  287. Sabato AG, Chrysanthou A, Salvo M et al (2018) Interface stability between bare , Mn - Co spinel coated AISI 441 stainless steel and a diopsidebased glass-ceramic sealant. Int J Hydrogen Energy 43(3):1824–1834

    Article  CAS  Google Scholar 

  288. Hasanabadi MF, Kokabi AH, Nemati A, Ajabshir SZ (2017) Interactions near the triple-phase boundaries metal / glass / air in planar solid oxide fuel cells. Int J Hydrog Energy 42:5306–5314. https://doi.org/10.1016/j.ijhydene.2017.01.065

    Article  CAS  Google Scholar 

  289. Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells – A review. Materials Science and Engineering:R: Reports 67(5-6):65–85

    Article  CAS  Google Scholar 

  290. Bram M, Niewolak L, Shah N et al (2011) Interaction of sealing material mica with interconnect steel for solid oxide fuel cells application at 600 ° C. J Power Sources 196:5889–5896. https://doi.org/10.1016/j.jpowsour.2011.02.086

    Article  CAS  Google Scholar 

  291. Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng A 67:65–85. https://doi.org/10.1016/j.mser.2009.12.002

    Article  CAS  Google Scholar 

  292. Amarnath A, Tulyaganov DU, Goel A et al (2012) Diopside-Mg orthosilicate and diopside-Ba disilicate glass- ceramics for sealing applications in SOFC : Sintering and chemical interactions studies. Int J Hydrog Energy 7:12528–12539. https://doi.org/10.1016/j.ijhydene.2012.05.130

    Article  CAS  Google Scholar 

  293. Rautanen M, Thomann O, Himanen O et al (2014) Glass coated compressible solid oxide fuel cell seals. J Power Sources 247:243–248. https://doi.org/10.1016/j.jpowsour.2013.08.085

    Article  CAS  Google Scholar 

  294. Thomann O, Rautanen M, Himanen O et al (2015) Post-experimental analysis of a solid oxide fuel cell stack using hybrid seals. J Power Sources 274:1009–1015. https://doi.org/10.1016/j.jpowsour.2014.10.100

    Article  CAS  Google Scholar 

  295. Fergus JW (2005) Sealants for solid oxide fuel cells. J Power Sources 147:46–57. https://doi.org/10.1016/j.jpowsour.2005.05.002

    Article  CAS  Google Scholar 

  296. Hsu J, Kim C, Brow RK et al (2014) An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells. J Power Sources 270:14–20. https://doi.org/10.1016/j.jpowsour.2014.07.088

    Article  CAS  Google Scholar 

  297. Smeacetto F, Salvo M, Leone P et al (2011) Performance and testing of joined Crofer22APU-glass-ceramic sealant-anode supported cell in SOFC relevant conditions. Mater Lett 65:1048–1052. https://doi.org/10.1016/j.matlet.2010.12.050

    Article  CAS  Google Scholar 

  298. Smeacetto F, De Miranda A, Chrysanthou A et al (2014) Novel glass-ceramic composition as sealant for SOFCs. J Am Ceram Soc 8:1–8. https://doi.org/10.1111/jace.13219

    Article  CAS  Google Scholar 

  299. Choi JP, Weil KS, Chou YM et al (2010) Development of MnCoO coating with new aluminizing process for planar SOFC stacks. Int J Hydrog Energy 36:4549–4556. https://doi.org/10.1016/j.ijhydene.2010.04.110

    Article  CAS  Google Scholar 

  300. Kiebach R, Agersted K, Zielke P, Ritucci I, Brock MB, Hendriksen PV (2017) A novel SOFC/SOEC sealing glass with a low SiO2 content and a high thermal expansion coefficient. Electrochem Soc 78:1739–1747

    CAS  Google Scholar 

  301. Singh RN (2007) Sealing technology for solid oxide fuel cells ( SOFC ). Int J Appl Ceram Technol 4:134–144

    Article  CAS  Google Scholar 

  302. Kiebach R, Engelbrecht K, Grahl-madsen L et al (2016) An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells. J Power Sources 315:339–350. https://doi.org/10.1016/j.jpowsour.2016.03.030

    Article  CAS  Google Scholar 

  303. Si X, Cao J, Ritucci I et al (2018) Enhancing the long-term stability of Ag based seals for solid oxide fuel / electrolysis applications by simple interconnect aluminization. Int J Hydrog Energy 44:3063–3074. https://doi.org/10.1016/j.ijhydene.2018.11.071

    Article  CAS  Google Scholar 

  304. Almar AL, Morata A, Torrell M, Gong M, Liu M, Tarancon A (2017) A Durable Electrode for Solid Oxide Cells: Mesoporous Ce0.8Sm0.2O1.9 Scaffolds Infiltrated with a Sm0.5Sr0.5CoO3-δ Catalyst. Electrochim Acta. 235:646–653

    Article  CAS  Google Scholar 

  305. da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: A literature review. Int J Hydrogen Energy 42(41):26020–26036

    Article  CAS  Google Scholar 

  306. da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrog Energy 42:26020–26036. https://doi.org/10.1016/j.ijhydene.2017.08.105

    Article  CAS  Google Scholar 

  307. Park B, Song R, Lee S et al (2017) Conformal bi-layered perovskite / spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route. J Power Sources 348:40–47. https://doi.org/10.1016/j.jpowsour.2017.02.080

    Article  CAS  Google Scholar 

  308. Sharma DK, Filipponi M, Di Schino A, Rossi F, Castaldi J (2019) Corrosion Behaviour Of High Temperature Fuel Cells : Issues For Materials Selection. Croatian Metallurgical Society 58(3-4):347–351

    CAS  Google Scholar 

  309. Afroze S, Karim A, Cheok Q, Sten E, Azad AK (2019) Latest development of double perovskite electrode materials for solid oxide fuel cells : a review. Frontiers in Energy 13:770–797

    Article  Google Scholar 

  310. Ahn M, Han S, Lee J, Lee W (2020) Electrospun composite nano fibers for intermediate-temperature solid oxide fuel cell electrodes. Ceram Int. 46(5):6006–6011

    Article  CAS  Google Scholar 

  311. Kaur P, Singh K (2020) Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceram Int 46(5):5521–5535

    Article  CAS  Google Scholar 

  312. Li J, Wang C, Wang X et al (2020) Sintering aids for proton-conducting oxides- A double edged sword? A mini review. Electrochem commun. 112:106672

    Article  CAS  Google Scholar 

  313. Xu X, Wang C, Fronzi M, Liu X, Bi L, Zhao XS (2019) Modification of a first ‑ generation solid oxide fuel cell cathode with Co3O4 nanocubes having selectively exposed crystal planes. Mater Renew Sustain Energy 8(15):1–8

    Google Scholar 

  314. Xu X, Wang C, Fronzi M et al (2019) Modification of a first - generation solid oxide fuel cell cathode with ­ Co 3 O 4 nanocubes having selectively exposed crystal planes. Mater Renew Sustain Energy 8:1–8. https://doi.org/10.1007/s40243-019-0154-z

    Article  Google Scholar 

  315. Andrade G, Vı J, Mu FJ et al (2018) Advances in the development of titanates for anodes in SOFC. Int J Hydrog Energy 5:1–14. https://doi.org/10.1016/j.ijhydene.2018.05.171

    Article  CAS  Google Scholar 

  316. Timurkutluk B, Dokuyucu S, Onbilgin S (2020) Novel structured anode-supported solid oxide fuel cells with porous GDC interlayers. Ceram Int 46(8):Part A:11066–Part A:11074

    Article  CAS  Google Scholar 

  317. Wang W, Qu J, Julião PSB, Shao Z (2017) Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: a mini review. Energy Technology 7(1):33–44

    Article  CAS  Google Scholar 

  318. Wan Y, Xing Y, Xie Y, Xu J, Xia C (2019) Vanadium Doped Strontium Molybdate with Exsolved Ni Nanoparticles as Anode Material for Solid Oxide Fuel Cells. ACS Appl Mater Interfaces 11(45):42271–42279

    Article  CAS  PubMed  Google Scholar 

  319. Raza R, Zhu B, Ra A et al (2020) Functional ceria-based nanocomposites for advanced low- temperature ( 300 -- 600 C ) solid oxide fuel cell : A comprehensive review. Mater today energy. https://doi.org/10.1016/j.mtener.2019.100373

  320. Zakaria Z, Hasmady S, Hassan A, Shaari N (2019) A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. Int J Energy Res 48(22):631–650

    Google Scholar 

  321. Pikalova EY, Kalinina EG (2019) Electrophoretic deposition in the solid oxide fuel cell technology : Fundamentals and recent advances. Renew Sustain Energy Rev 116:109440

    Article  CAS  Google Scholar 

  322. Pikalova EY, Kalinina EG (2019) Electrophoretic deposition in the solid oxide fuel cell technology : fundamentals and recent advances. Renew Sust Energ Rev 116:109440. https://doi.org/10.1016/j.rser.2019.109440

    Article  CAS  Google Scholar 

  323. Khan MZ, Song R, Lee S, Lim T (2019) Development of oxide dispersed ferritic steel as a solid oxide fuel cell interconnect. ECS Trans 19:2307–2312. https://doi.org/10.1149/09101.2307ecst

    Article  Google Scholar 

  324. Goebel C, Berger R, Bernuy-lopez C et al (2019) Long-term ( 4 year ) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications. J Power Sources. 449:227480

    Article  CAS  Google Scholar 

  325. Goebel C, Berger R, Bernuy-lopez C et al (2019) Long-term ( 4 year ) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications. J Power Sources. https://doi.org/10.1016/j.jpowsour.2019.227480

  326. Yoon H, Kim T, Park S, Mark N (2017) Stable LSM / LSTM bi-layer interconnect for flat-tubular solid oxide fuel cells. Int J Hydrogen Energy 1–10. https://doi.org/10.1016/j.ijhydene.2017.11.024

  327. Kolisetty A, Fu Z, Koc R (2017) Development of La(CrCoFeNi)O3 system perovskites as interconnect and cathode materials for solid oxide fuel cells. Ceram Int 3. https://doi.org/10.1016/j.ceramint.2017.03.061

  328. Krainova DA, Saetova NS, Kuzmin A V, et al (2019) Non-crystallising glass sealants for SOFC: effect of Y 2 O 3 addition. Ceram Int 266. https://doi.org/10.1016/j.ceramint.2019.10.266

  329. Saetova NS, Krainova DA, Kuzmin AV, Raskovalov AA (2018) Alumina – silica glass – ceramic sealants for tubular solid oxide fuel cells. J Mater Sci. https://doi.org/10.1007/s10853-018-3181-8

  330. Rost A, Kusnezoff M, Megel S, Michaelis A (2017) Glass ceramics sealants for SOFC interconnects based on a high chromium sinter alloy. Int J Appl Ceram Technol 239–254. https://doi.org/10.1111/ijac.12811

  331. Timurkutluk B, Altan T, Celik S, Palaci Y (2019) Glass fiber reinforced sealants for solid oxide fuel cells. Int J Hydrogen Energy 44(33):18308–18318

    Article  CAS  Google Scholar 

  332. Timurkutluk B, Altan T, Celik S (2019) Glass fiber reinforced sealants for solid oxide fuel cells. Int J Hydrog Energy 44:18308–18318. https://doi.org/10.1016/j.ijhydene.2019.05.116

    Article  CAS  Google Scholar 

  333. Damo UM, Ferrari ML, Turan A, Massardo AF (2019) Solid oxide fuel cell hybrid system : a detailed review of an environmentally clean and ef fi cient source of energy. Energy 168:235–246. https://doi.org/10.1016/j.energy.2018.11.091

    Article  Google Scholar 

  334. Tai XY, Zhakeyev A, Wang H et al (2019) Accelerating Fuel Cell Development with Additive Manufacturing Technologies : State of the Art, Opportunities and Challenges. Fuel Cells 19(6):636–650

  335. Chueh C, Bertei A, Nicolella C (2019) Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells. J Power Sources 437:226888

    Article  CAS  Google Scholar 

  336. Chueh C, Bertei A, Nicolella C (2019) Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells. J Power Sources 437:226888. https://doi.org/10.1016/j.jpowsour.2019.226888

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Council of Scientific and Industrial Research (CSIR), Govt. of India and BITS Pilani Hyderabad Campus for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sreedhar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedhar, I., Agarwal, B., Goyal, P. et al. An overview of degradation in solid oxide fuel cells-potential clean power sources. J Solid State Electrochem 24, 1239–1270 (2020). https://doi.org/10.1007/s10008-020-04584-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04584-4

Keywords

Navigation