Skip to main content

Advertisement

Log in

Three-dimensional ZnS/reduced graphene oxide/polypyrrole composite for high-performance supercapacitors and lithium-ion battery electrode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, three-dimensional ZnS/reduced graphene oxide/polypyrrole ternary composites were synthesized. The as-prepared composites are investigated as electrode materials for supercapacitors and lithium-ion batteries. For the application of supercapacitor in three electrode system, its discharge specific capacitance and energy density at 1 A/g are 1175.8 F/g and 80.0 Wh/kg after 5000 cycles, respectively. Meanwhile, its cycle stability at 1 A/g is up to 151% during 5000 loops. For the application of lithium-ion battery, its discharge specific capacitance and energy density at 100 mA/g can be up to 1446.9 mAh/g and 955.6 Wh/kg after 200 cycles, respectively. The cycle stability of the ternary composite is up to 157% at 100 mA/g during 200 loops. The excellent electrochemical performance of the composites could be ascribed to the three-dimensional structure which facilitates the penetration of the electrolyte and the insertion/extraction process of Li+ and the synergistic effect between organic and inorganic materials. The results indicate that the ZnS/reduced graphene oxide/polypyrrole composite are promising electrode materials for high-performance supercapacitors and lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2014) Chem Rev 104:4245–4270

    Google Scholar 

  2. Najib S, Erdem E (2019) Nanoscale Adv 1:2817–2827

    Google Scholar 

  3. Du Pasquier A, Plitz I, Menocal S, Amatucci G (2013) J Power Sources 115:171–178

    Google Scholar 

  4. Costentin C, Porter TR, Savéant JM (2017) ACS Appl Mater Interfaces 9(10):8649–8658

    CAS  PubMed  Google Scholar 

  5. Wang H, Dai H (2013) Chem Soc Rev 42(7):3088–3113

    CAS  PubMed  Google Scholar 

  6. Zhou J, Qiu Z, Si W, Cui H, Zhuo S (2015) Electrochim Acta 180:1007–1013

    CAS  Google Scholar 

  7. Zhou W, Cheng C, Liu J, Tay YY, Jiang J, Jia X, Zhang J, Gong H, Hung HH, Yu T, Fan HJ (2011) Adv Funct Mater 21:2439–2445

    CAS  Google Scholar 

  8. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262

    CAS  Google Scholar 

  9. Li J, Xie H (2012) Mater Lett 78:106–109

    CAS  Google Scholar 

  10. Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) Sci Rep 7(1):11222

    PubMed  PubMed Central  Google Scholar 

  11. Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) J Power Sources 376:82–90

    CAS  Google Scholar 

  12. Mondal AK, Liu H, Li ZF, Wang G (2016) Electrochim Acta:190346–190353

  13. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Adv Energy Mater 6:1600802

    Google Scholar 

  14. Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng HM, Yang QH (2016) Energy Environ Sci 9:3135–3142

    CAS  Google Scholar 

  15. Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Nano Energy 36:322–330

    CAS  Google Scholar 

  16. Wang T, Hu P, Zhang C, Du H, Zhang Z, Wang X, Chen S, Xiong J, Cui G (2016) ACS Appl Mater Interfaces 8(12):7811–7817

    CAS  PubMed  Google Scholar 

  17. Seo JW, Jang JT, Park SW, Kim C, Park B, Cheon J (2008) Adv Mater 20:4269–4273

    CAS  Google Scholar 

  18. Li X, Zhang C, Xin S, Yang Z, Li Y, Zhang D, Yao P (2016) ACS Appl Mater Interfaces 8(33):21373–21380

    CAS  PubMed  Google Scholar 

  19. Mao M, Jiang L, Wu L, Zhang M, Wang T (2015) J Mater Chem A 3:13384–13389

    CAS  Google Scholar 

  20. Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E (2018) Nanoscale 10(4):1877–1884

    CAS  PubMed  Google Scholar 

  21. Ma Y, Chang H, Zhang M, Chen Y (2015) Adv Mater 27:5296–5308

    CAS  PubMed  Google Scholar 

  22. Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M (2017) Carbon 113:151–158

    CAS  Google Scholar 

  23. Tan Y, Liang M, Lou P, Cui Z, Guo X, Sun W, Yu X (2016) ACS Appl Mater Interfaces 8(23):14488–14493

    CAS  PubMed  Google Scholar 

  24. Heydari H, Moosavifard SE, Elyasi S, Shahraki M (2017) Appl Surf Sci 394:425–430

    CAS  Google Scholar 

  25. Chang K, Wang Z, Huang G, Li H, Chen W, Lee JY (2012) J Power Sources 201:259–266

    CAS  Google Scholar 

  26. Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S (2017) ACS Appl Mater Interfaces 9(33):27697–27706

    CAS  PubMed  Google Scholar 

  27. Xue L, Shen C, Zheng M, Lu H, Li N, Ji G, Pan L, Cao J (2011) Mater Lett 65:198–200

    CAS  Google Scholar 

  28. Li Y, Liu Y, Shen W, Yang Y, Wen Y, Wang M (2011) Mater Lett 65:2518–2521

    CAS  Google Scholar 

  29. Zhang Y, Chen Z, Zhang D, Zhao Y, Wu P, Wang F (2018) Mater Lett 227:158–160

    CAS  Google Scholar 

  30. Alas MO, Güngör A, Genc R, Erdem E (2019) Nanoscale 11(27):12804–12816

    CAS  PubMed  Google Scholar 

  31. Holzwarth U, Gibson N (2011) Nat Nanotechnol 6:534

    CAS  PubMed  Google Scholar 

  32. Fang Y, Jiang X, Niu L, Wang S (2017) Mater Lett 190:232–235

    CAS  Google Scholar 

  33. Kashani H, Chen L, Ito Y, Han J, Hirata A, Chen M (2016) Nano Energy 19:391–400

    CAS  Google Scholar 

  34. Yang D, Bock C (2017) J Power Sources 337:73–81

    CAS  Google Scholar 

  35. Wang W, Li GC, Wang Q, Li GR, Ye SH, Gao XP (2013) J Electrochem Soc 160:A805–A810

    CAS  Google Scholar 

  36. Thangavel S, Krishnamoorthy K, Kim SJ, Venugopal G (2016) J Alloys Compd 683:456–462

    CAS  Google Scholar 

  37. Xie D, Wang DH, Tang WJ, Xia XH, Zhang YJ, Wang XL, Gu CD, Tu JP (2016) J Power Sources 307:510–518

    CAS  Google Scholar 

  38. Prasankumar T, Karazhanov S, Jose SP (2018) Mater Lett 221:179–182

    CAS  Google Scholar 

  39. Lim YS, Tan YP, Lim HN, Huang NM, Tan WT, Yarmo MA, Yin CY (2014) Ceram Int 40:3855–3864

    CAS  Google Scholar 

  40. Atikah Md Jani N, Aidil Ibrahim M, Ishak Tunku Kudin T, Malik Marwan Ali A, Osman H, Hasdinor Hassan O (2017) Mater Today Proc 4:5138–5145

    Google Scholar 

  41. Ramachandran R, Saranya M, Kollu P, Raghupathy BPC, Jeong SK, Grace AN (2015) Electrochim Acta 178:647–657

    CAS  Google Scholar 

  42. Purty B, Choudhary RB, Biswas A, Udayabhanu G (2018) Mater Chem Phys 216:213–222

    CAS  Google Scholar 

  43. Chee WK, Lim HN, Harrison I, Chong KF, Zainal Z, Ng CH, Huang NM (2015) Electrochim Acta 157:88–94

    CAS  Google Scholar 

  44. Zhang F, Zhang T, Yang X, Zhang L, Leng K, Huang Y, Chen Y (2013) Energy Environ Sci 6:1623–1632

    CAS  Google Scholar 

  45. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Electrochim Acta 56:7460–7466

    CAS  Google Scholar 

  46. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) J Power Sources 196:5990–5996

    CAS  Google Scholar 

  47. Xu Z, Zhang Z, Gao L, Lin H, Xue L, Zhou Z, Zhou J, Zhuo S (2018) RSC Adv 8:40252–40260

    CAS  Google Scholar 

  48. Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) J Power Sources 241:517–521

    CAS  Google Scholar 

  49. Chang K, Geng D, Li X, Yang J, Tang Y, Cai M, Li R, Sun X (2013) Adv Energy Mater 3(7):839–844

    CAS  Google Scholar 

  50. Kundu D, Krumeich F, Nesper R (2013) J Power Sources 236:112–117

    CAS  Google Scholar 

  51. Yang Y, Wang C, Yue B, Gambhir S, Too CO, Wallace GG (2012) Adv Energy Mater 2:266–272

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21403130; 21403129; 21576158), the Natural Science Foundation of Shandong Province (ZR2014BQ028, 2015ZRB01765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supporting Information

The characterization information and preparation of pristine materials. The Energy Dispersive Spectrometer (EDS) images of ZnS/RGO/PPy-70. The SEM images of ZnS/RGO/PPy-x (x = 30, 50, 70, and 90, x represents the mass ratio of PPy). The electrochemical performance of ZnS/RGO/PPy-x include CV curves at 5 mV/s, GCD plots at 1 A/g and Nyquist plots from 100 kHz to 0.01 Hz for application of SCs. The Nyquist plots of the different cycles of ZnS/RGO/PPy-70 electrode for application for LIBs, and calculate the effective capacitance value through the EIS data.

ESM 1

(DOCX 4120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhang, Z., Li, M. et al. Three-dimensional ZnS/reduced graphene oxide/polypyrrole composite for high-performance supercapacitors and lithium-ion battery electrode material. J Solid State Electrochem 23, 3419–3428 (2019). https://doi.org/10.1007/s10008-019-04434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04434-y

Navigation