Skip to main content
Log in

Combined parametric optimization of P3HT: PC70BM films for efficient bulk-heterojunction solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this report, the effects of photoactive blend compositions, film thicknesses, and annealing conditions on the P3HT:PC70BM solar cells performance and reproducibility was investigated. The performance of prepared devices was described by examining their absorption spectra, current-voltage characteristics and external quantum efficiency (EQE). The thickness of active layer was achieved as 190 nm, 125 nm, and 90 nm, by maintaining the spin speed. Current density (Jsc) slightly increases from 6.39 to 7.15 mA/cm2 with increase in thickness from 90 to 125 nm; however, with further increase in film thickness (190 nm), the Jsc was reduced to 4.39 mA/cm2. To optimize the device performance, four different compositions of PC70BM (1:0.6, 1:0.8, 1:1, and 1:12) were investigated at the most favorable film thickness ~ 125 nm. The effect of different PC70BM compositions on photovoltaic performance was demonstrated by X-ray diffraction (XRD) and Raman measurements that illuminated modification in structural properties. Additionally, annealing condition led to achieve the good phase separation for efficient charge separation and transport within P3HT: PCBM film which further leads to increased efficiency (PCE ~ 3.31%). These effects deliver valued facts for the choices of PC70BM amount in P3HT:PC70BM system, and this efficient device optimization might be useful in other efficient photovoltaic systems for better performance through excellent reproducibility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bahrami A, Mohammadnejad S, Soleimaninezhad S (2013) Photovoltaic cells technology: principles and recent developments. Opt Quant Electron 45:161–197

    Google Scholar 

  2. Morvillo P, Grimaldi AI, Diana R, Loffredo F, Villani F (2013) Study of the microstructure of inkjet-printed P3HT:PCBM blend for photovoltaic applications. J Mater Sci 48(7):2920–2927

    CAS  Google Scholar 

  3. Ahmad K, Mobin SM (2017) Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New J Chem 41:14253–14258

    CAS  Google Scholar 

  4. Siddiqui H 2019). Modification of physical and chemical properties of titanium dioxide (TiO<sub>2</sub>) by ion implantation for dye sensitized solar cells [online first], IntechOpen, https://doi.org/10.5772/intechopen.83566. Available from: https://www.intechopen.com/online-first/modification-of-physical-and-chemical-properties-of-titanium-dioxide-tio2-by-ion-implantation-for-dy

  5. Izawa S, Perrot A, Lee J-H, Hiramoto M (2019) Organic pn homojunction solar cell. Org Electron 71:45–49

    CAS  Google Scholar 

  6. Duan L, Elumalai NK, Zhang Y, Uddin A (2019) Progress in non-fullerene acceptor based organic solar cells. Sol Energy Mater Sol Cells 193:22–65

    CAS  Google Scholar 

  7. Yu W, Xu B, Dong Q, Zhou Y, Zhang J, Tian W, Yang B (2010) A two-step method combining electrodepositing and spin-coating for solar cell processing. J Solid State Electrochem 14:1051–1056

    CAS  Google Scholar 

  8. Zoromba MS, Abdel-Aziz MH, Bassyouni M, Bahaitham H, Al-Hossainy AF (2018) Poly(o-phenylenediamine) thin film for organic solar cell applications. J Solid State Electrochem 22:3673–3687

    CAS  Google Scholar 

  9. Ramírez O, Cabrera V, Reséndiz LM (2014) Optimum ratio of electron-to-hole mobility in P3HT:PCBM organic solar cells. Opt Quant Electron 46:1291–1296

    Google Scholar 

  10. Vlamidis Y, Lanzi M, Salatelli E, Gualandi I, Fraboni B, Setti L (2015) Electrodeposition of PEDOT perchlorate as an alternative route to PEDOT:PSS for the development of bulk heterojunction solar cells. J Solid State Electrochem 19:1685–1693

    CAS  Google Scholar 

  11. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H-L, Cao Y, Chen Y (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098

    CAS  PubMed  Google Scholar 

  12. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731

    CAS  PubMed  Google Scholar 

  13. Movla H, Shahalizad A and Abad A.R.N (2015) Influence of active region thickness on the performance of bulk heterojunction solar cells: electrical modeling and simulation, Opt Quant Electron 47: 621–632

    Google Scholar 

  14. Ans M, Ayub K, Muhammad S, Iqbal J (2019) Development of fullerene free acceptors molecules for organic solar cells: a step way forward toward efficient organic solar cells. Comput Theor Chem 1161:26–38

    CAS  Google Scholar 

  15. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Mater 13(1):85–88

    CAS  Google Scholar 

  16. Kadem B, Hassan A, Cranton W (2016) Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J Mater Sci Mater Electron 27:7038–7048

    CAS  Google Scholar 

  17. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nano morphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15:1317–1323

    CAS  Google Scholar 

  18. Huang J, Li G, Yang Y (2005) Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends. Appl Phys Lett 87:112105

    Google Scholar 

  19. Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704

    Google Scholar 

  20. Reyes-Reyes M, Kim K, Carroll D. L (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends, Appl Phys Lett 87: 083506

    Google Scholar 

  21. Nazerdeylami S, Rezagholipour DH (2016) Influence of exponential tail states on photovoltaic parameters and recombination of bulk heterojunction organic solar cells: an optoelectronic simulation. Opt Quant Electron 48:260

    Google Scholar 

  22. Rahman DMA, Hameed MFO, Obayya SSA (2015) Light harvesting improvement of polymer solar cell through nanohole photoactive layer. Opt Quant Electron 47:1443–1449

    CAS  Google Scholar 

  23. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    CAS  Google Scholar 

  24. Malgas GF, Motaung DE, Arendse CJ (2012) Temperature-dependence on the optical properties and the phase separation of polymer–fullerene thin films. J Mater Sci 47:4282–4289

    CAS  Google Scholar 

  25. Mihailetchi V D, Xie HX, Boer B. de, Popescu L M, Hummelen JC, Blom PWM, Koster LJA (2006) Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl Phys Lett 89: 012107

    Google Scholar 

  26. Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Composition and annealing effects in polythiophene/fullerene solar cells. J Mater Sci 40:1371–1376

    CAS  Google Scholar 

  27. Park JH, Kim JS, Lee JH, Lee WH, Cho K (2009) Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells. J Phys Chem C 113(40):17579–17584

    CAS  Google Scholar 

  28. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636–1644

    Google Scholar 

  29. Grzibovskis R, Vembris A (2018) Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: case of P3HT:PCBM. J Mater Sci 53:7506–7515

    CAS  Google Scholar 

  30. Supriyanto A, Mustaqim A, Agustin M, Ramelan AH, Suyitno RES, Yofentina NF (2016) Fabrication of organic solar cells with design blend P3HT: PCBM variation of mass ratio. IOP Conf Ser: Mater Sci Eng 107:012050

    Google Scholar 

  31. Dang MT, Wantz G, Bejbouji H, Urien M, Dautel OJ, Vignau L, Hirsch L (2011) Polymeric solar cells based on P3HT:PCBM role of the casting solvent. Sol Energy Mater Sol Cells 95:3408–3418

    CAS  Google Scholar 

  32. Güney HY, Avdan Z, Yetkin H (2019) Optimization of annealing temperature and the annealing effect on life time and stability of P3HT:PCBM-based organic solar cells. Mater Res Express 6:045103

    Google Scholar 

  33. Munshi J, Ghumman UF, Iyer A, Dulal R, Chen W, Chien TY, Balasubramanian G (2019) Effect of polydispersity on the bulk-heterojunction morphology of P3HT: PCBM solar cells. J Polym Sci B Polym Phys 5:895–903

    Google Scholar 

  34. Gusain A, Faria RM, Miranda PB (2019) Polymer solar cells-interfacial processes related to performance issues. Front Chem 7:61

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Motaung DE, Malgas GF, Nkosi SS, Mhlongo GH, Mwakikunga BW, Malwela T, Arendse CJ, Muller TFG, Cummings FR (2013) Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends. J Mater Sci 48:1763–1778

    CAS  Google Scholar 

  36. Siddiqui H (2019) Lead-free perovskite quantum structures towards the efficient solar cell. Mater Lett 249:99–103

    CAS  Google Scholar 

  37. Cai W, Gong X, Cao Y (2014) Polymer solar cells: recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells 94:114–127

    Google Scholar 

  38. Janssen RAJ, Nelson J (2013) Factors limiting device efficiency in organic photovoltaics. Adv Mater 25(13):1847–1858

    CAS  PubMed  Google Scholar 

  39. Reséndiz L, Balderrama VS, Lastra G, Ramírez M, Cabrera V, Estrada M (2019) Optimization of PFN thickness in inverted high-performance PTB7:PC70BM solar cells. Solid State Electron 153:33–36

    Google Scholar 

  40. Sauvé G (2019) Designing alternative non-fullerene molecular electron acceptors for solution-processable organic photovoltaics. Chem Rec 19(6):1078–1092

    PubMed  Google Scholar 

  41. Li Z, Wong HC, Huang Z, Zhong H, Tan CH, Tsoi WC, Kim JS, Durrant JR, Cabral JT (2013) Performance enhancement of fullerene-based solar cells by light processing. Nat Commun 4:2227

    PubMed  Google Scholar 

  42. Treat ND, Shuttle CG, Toney MF, Hawker CJ, Chabinyc ML (2011) In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells. J Mater Chem 21:15224–15231

    CAS  Google Scholar 

  43. Chi D, Qu S, Wang Z, Wang J (2014) High efficiency P3HT:PCBM solar cells with an inserted PCBM layer. J Mater Chem C 2:4383

    CAS  Google Scholar 

  44. Velazquez AAM, Canto-Reyes D, Mendez-Gamboa JA, Acosta M (2019) Optical absorption enhancement of P3HT:PCBM films through nanocavities using polystyrene as a template. Mater Lett 245:65–67

    Google Scholar 

  45. Singh I, Madhwal D, Kumar J, Bhatia CS, Bhatnagar PK, Mathura PC (2011) Effect of thermal annealing on the efficiency of poly (3-hexylthiphone):[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunction solar cells. Journal of Nanophotonics 5(1):053504

    Google Scholar 

  46. Movla H, Rafi AM, Rafi NM (2015) A model for studying the performance of P3HT:PCBM organic bulk heterojunction solar cells. Optik 126(15–16):1429–1432

    CAS  Google Scholar 

  47. Kim JY, Noh S, Kwak J, Lee C (2013) Analysis of annealing process on P3HT:PCBM-based polymer solar cells using optical and impedance spectroscopy. J Nanosci Nanotechnol 13(5):3360–3364

    CAS  PubMed  Google Scholar 

  48. Taibia I, Belghachi A, Abid H (2016) Effect of trapping and temperature on the performance of P3HT:PCBM organic solar cells. Optik 27(20):8592–8599

    Google Scholar 

  49. Chang SC, Hsiao YJ, Li TS (2015) Selecting annealing temperature of P3HT/PCBM incorporated with nano-diamonds using thermal desorption spectroscopy. Int J Electrochem Sci 10:1658–1668

    Google Scholar 

  50. Scholes DT, Yee PY, Lindemuth JR, Kang H, Onorato J, Ghosh R, Luscombe CK, Spano FC, Tolbert SH, Schwartz BJ (2017) The effects of crystallinity on charge transport and the structure of sequentially processed F4TCNQ-doped conjugated polymer films. Adv Funct Mater 27(44):1702654

    Google Scholar 

  51. Parra MR, Pandey P, Siddiqui H, Sudhakar V, Krishnamoorthy K, Haque FZ (2019) Evolution of ZnO nanostructures as hexagonal disk: implementation as photoanode material and efficiency enhancement in Al: ZnO based dye sensitized solar cells. Appl Surf Sci 470:1130–1138

    Google Scholar 

  52. Padmini P, Parra MR, Haque FZ, Kurchania R (2017) Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode-based dye sensitized solar cells. J Mater Sci Mater Electron 28:1537–1545

    Google Scholar 

  53. Parra MR, Pandey P, Siddiqui H, Qadri SB, Haque FZ (2019) New-insight into the physical properties of Zn1-xBxO two dimensional hexagonal nanodisks: an efficient material for dye sensitized solar cells. Mater Lett 238:194–197

    CAS  Google Scholar 

  54. Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167

    CAS  PubMed  Google Scholar 

  55. Wright M, Lin R, Tayebjee MJY, Conibeer G (2017) Effect of blend composition on bulk heterojunction organic solar cells: a review. Solar RRL 1:3–4

    Google Scholar 

  56. Xu WL, Wang YB, Yang XY, Qin W, Hao XT (2018) Exploring charge transfer processes and crystallization dynamics in donor-acceptor crystals. Org Electron 58:105–110

    CAS  Google Scholar 

  57. Xu WL, Wu B, Zheng F, Wang HB, Wang YZ, Bian FG, Hao XT, Zhu F (2015) Homogeneous phase separation in polymer: fullerene bulk heterojunction organic solar cells. Org Electron 25:266–274

    CAS  Google Scholar 

  58. Falke S, Eravuchira P, Materny A, Lienau C (2011) Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends. J Raman Spectrosc 42(10):1897–1900

    CAS  Google Scholar 

  59. Ramkia K, Venkatesh N, Sathiyan G, Thangamuthu R, P. Sakthivel (2019) A comprehensive review on the reasons behind low power conversion efficiency of dibenzo derivatives based donors in bulk heterojunction organic solar cells. Org Electron 73: 182–204

    CAS  Google Scholar 

  60. Sun Y, Liu J, Ding Y, Han Y (2013) Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chin J Polym Sci 31(7):1029–1037

    CAS  Google Scholar 

  61. Kadem B, Hassan A (2015) The effect of fullerene derivatives ratio on P3HT-based organic solar cells. Energy Procedia 74:439–445

    CAS  Google Scholar 

  62. Kalita G, Masahiro M, Koichi W, Umeno M (2010) Nanostructured morphology of P3HT:PCBM bulk heterojunction solar cells. Solid State Electron 54(4):447–451

    CAS  Google Scholar 

  63. Duan Z, Fujii S, Liu Z, Okukawa T, Yoshida A, Yanagi Y, Kataura H, Zhao G, Nishioka Y (2013) Flexible organic solar cells based on spin-coated blend films of a phenylene-thiophene oligomer derivative and PCBM. Mol Cryst Liq Cryst 578:78–87

    CAS  Google Scholar 

  64. Lee SJ, Kim HP, Yusoff AB, Jang J (2015) Understanding the role of organic polar solvent induced nanoscale morphology and electrical evolutions of P3HT:PCBM composite film. Org Electron 25:50–56

    CAS  Google Scholar 

  65. Xuan Yu X, Yu X, Hu ZJ, Zhao G, Zhao Y (2013) Efficiency enhancement of polymer solar cells by post-additional annealing treatment. Optoelectron Lett 9(4):274–277

    Google Scholar 

  66. Agbolaghi S, Zenoozi S (2017) A comprehensive review on poly(3-alkylthiophene)-based crystalline structures, protocols and electronic applications. Org Electron 51:362–403

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Director of the CSIR-NCL, Pune, and pleased to acknowledge Dr. Kothandam Krishnamoorthy, Scientist, Polymers and Advanced Materials Laboratory, CSIR-NCL, Pune for OPV fabrication and testing. The authors are thankful to Mr. Sundaresan Chithiravel for their support and help during OPV fabrication and testing. The authors are grateful to the Director of the UGC-DAE-CSR, Indore Centre, for performing XRD and Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafsa Siddiqui or Fozia Zia Haque.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, H., Parra, M.R., Pandey, P. et al. Combined parametric optimization of P3HT: PC70BM films for efficient bulk-heterojunction solar cells. J Solid State Electrochem 23, 3267–3274 (2019). https://doi.org/10.1007/s10008-019-04421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04421-3

Keywords

Navigation