Skip to main content
Log in

Vertically aligned tree-like carbon nanostructure as an electrode of the electrochemical capacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The thin film of a vertically aligned tree-like carbon nanostructure is synthesised to study its performance as a novel electrode material of the electrochemical capacitor. The individual constituent nanostructures of the film are multiwalled carbon nanotubes aligned perpendicular to the substrate with carbon films attached to it like branches. This unique nanostructured carbon thin film has a regular geometrical arrangement with a very high surface area due to the distinctive structural morphology along with a good contact with the conducting substrate on which it is directly deposited. This makes the material an attractive candidate as the electrode of an electrochemical capacitor. The performance of this nanostructured material has been studied in a symmetric two-electrode configuration. The material has shown an electrochemical double-layer capacitance-type behaviour, the characteristic of carbon-based electrodes, along with a good cyclic retentivity. The material has shown a specific capacitance of 0.55 mF cm−2 (3.7 F cm−3) at a current density of 0.88 mA cm−2, while the aligned carbon nanotube films of similar thickness has exhibited a specific capacitance of 0.08 mF cm−2 (0.66 F cm−3) for the same current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41(2):797–828

    Article  CAS  PubMed  Google Scholar 

  2. Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195(24):7880–7903

    Article  CAS  Google Scholar 

  3. Chen T, Dai L (2013) Mater Today 16(7–8):272–280

    Article  CAS  Google Scholar 

  4. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J, Wang Y, Liu J, Li J, Cao G (2012) Nano Energy 1(2):195–220

    Article  CAS  Google Scholar 

  5. Li X, We B (2013) Nano Energy 2(2):159–173

    Article  CAS  Google Scholar 

  6. Pan H, Li J, Feng YP (2010) Nanoscale Res Lett 5(3):654–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Cheng X, Shashurin A, Keidar M (2012) Graphene 1(01):1–13

    Article  CAS  Google Scholar 

  8. Seo DH, Yick S, Han Z, Fang JH, Ostrikov K (2014) ChemSusChem 7(8):2317–2324

    Article  CAS  PubMed  Google Scholar 

  9. Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM (2006) Nat Nanotechnol 1(2):112–116

    Article  CAS  PubMed  Google Scholar 

  10. Gao L, Peng A, Wang ZY, Zhang H, Shi Z, Gu Z, Cao G, Ding B (2008) Solid State Commun 146(9-10):380–383

    Article  CAS  Google Scholar 

  11. Lu W, Qu L, Henry K, Dai L (2009) J of Power Sources 189(2):1270–1277

    Article  CAS  Google Scholar 

  12. Lv P, Zhang P, Li F, Li Y, Feng Y, Feng W (2012) Synth Met 162(13-14):1090–1096

    Article  CAS  Google Scholar 

  13. Kim B, Chung H, Kim W (2012) Nanotechnology 23:155401 (8pages)

    Article  CAS  PubMed  Google Scholar 

  14. Reit R, Nguyen J, Ready WJ (2013) Electrochim Acta 91:96–100

    Article  CAS  Google Scholar 

  15. Shah R, Zhang X, Talapatra S (2009) Nanotechnology 20(39):395202 (5pages)

    Article  CAS  PubMed  Google Scholar 

  16. Hsia B, Marschewsk J, Wang S, In JB, Carraro C, Poulikakos D, Grigoropoulos CP, Maboudian R (2014) Nanotechnology 25:55401 (9pages)

    Article  CAS  Google Scholar 

  17. Dogru IB, Durukan MB, Turel O, Unalan HE (2016) Prog Nat Sci: Mater Int 26(3):232–236

    Article  CAS  Google Scholar 

  18. Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z (2018) Nanotechnology 29:195405 (11pp)

    Article  CAS  PubMed  Google Scholar 

  19. Pitkänen O, Järvinen T, Cheng H, Lorite GS, Dombovari1 A, Rieppo L, Talapatra S, Duong HM, Tóth G, Juhász KL, Kónya Z, Kukovecz A, Ajayan PM, Vajtai R, Kordás K (2017) Sci Rep 7(1):16594

  20. Seman RNAR, Azam MA, Mohamad AA (2017) Renew Sust Energ Rev 75:644–659

    Article  CAS  Google Scholar 

  21. Malik R, Zhang L, McConnell C, Schott M, Hsieh Y, Noga R, Alvarez NT, Shanov V (2017) Carbon 116:579–590

    Article  CAS  Google Scholar 

  22. Al-Asadi AS, Henley LA, Wasala M, Muchharla B, Perea-Lopez N, Carozo V, Lin Z, Terrones M, Mondal K, Kordas K, Talapatra S (2017) J Appl Phys 121(12):124303

    Article  CAS  Google Scholar 

  23. Oguntoye M, Oak S, Pashazanusi L, Pratt L, Pesika NS (2017) Electrochim Acta 236:408–416

    Article  CAS  Google Scholar 

  24. Nonomura R, Itoh T, Sato Y, Yokoyama K, Yamamoto M, Nishida T, Motomiya K, Tohji K, Sato Y (2018) Carbon 132:539–547

    Article  CAS  Google Scholar 

  25. Wul G, Tan P, Wang D, Li Z, Peng L, Hu Y, Wang C, Zhu W, Chen S, Chen W (2017) Sci Rep 7:43676

    Article  Google Scholar 

  26. Zhou Q, Chang J, Jiang Y, Wei T, Sheng L, Fan Z (2017) Electrochim Acta 251:91–98

    Article  CAS  Google Scholar 

  27. Ghosh M, Rao GM (2018) Carbon 133:239–248

    Article  CAS  Google Scholar 

  28. Deenamma KV, Rao GM (2000) Rev Sci Instrum 71:467–472

    Article  Google Scholar 

  29. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technology applications. Plenum Publisher, New York

    Book  Google Scholar 

  30. Premathilake D, Outlaw RA, Parler SG, Butler SM, Miller JR (2017) Carbon 111:231–237

    Article  CAS  Google Scholar 

  31. Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) Electrochim Acta 283:327–337

    Article  CAS  Google Scholar 

  32. Ray A, Roy A, Ghosh M, Ramos-Ramón JA, Saha S, Pal U, Bhattacharya SK, Das S (2019) Appl Surf Sci 463:513–552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A part of this research is performed using the Micro and Nano Characterisation Facilities (MNCF) at the Centre of Nanoscience and Engineering (CeNSE), Indian Institute of Science, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Rao, G.M. Vertically aligned tree-like carbon nanostructure as an electrode of the electrochemical capacitor. J Solid State Electrochem 23, 1605–1611 (2019). https://doi.org/10.1007/s10008-019-04253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04253-1

Keywords

Navigation