Skip to main content
Log in

Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g−1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g−1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g−1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g−1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goodennough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  3. Wang Z, Luo S, Ren J, Wang D, Qi X (2016) Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4. Appl Surf Sci 370:437–444

    Article  CAS  Google Scholar 

  4. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7:13014–13021

    Article  CAS  Google Scholar 

  5. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  6. Ito A, Li D, Ohsawa Y, Sato Y (2008) A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. J Power Sources 183:344–346

    Article  CAS  Google Scholar 

  7. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  8. Venkateswara Rao C, Soler J, Katiyar R, Shojan J, West WC, Katiyar RS (2014) Investigations on electrochemical behavior and structural stability of Li1.2Mn0.54Ni0.13Co0.13O2 lithium-ion cathodes viain-situ and ex-situ Raman spectroscopy. J Phys Chem C 118:14133–14141

    Article  CAS  Google Scholar 

  9. Guo XJ, Li YX, Zheng M, Zheng JM, Li J, Gong ZL, Yang Y (2008) Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2•(1−x)Li[Ni1/3Mn1/3Co1/3]O2 (0≤x≤0.9) as cathode materials for lithium ion batteries. J Power Sources 184:414–419

    Article  CAS  Google Scholar 

  10. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  11. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3component in ‘composite’ xLi2MnO3•(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6:1085–1091

    Article  CAS  Google Scholar 

  12. Yu H, Wang Y, Asakura D, Hosono E, Zhang T, Zhou H (2012) Electrochemical kinetics of the 0.5Li2MnO3•0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries. RSC Adv 2:8797–8807

    Article  CAS  Google Scholar 

  13. Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP (2012) Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 22:13104–13109

    Article  CAS  Google Scholar 

  14. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  15. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3•0.5LiMO2 electrodes for lithium batteries (M= Mn0.5−xNi0.5−xCo2x, 0≤x≤0.5). J Mater Chem 17:2069–2077

    Article  CAS  Google Scholar 

  16. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun 9(4):787–795

    Article  CAS  Google Scholar 

  17. Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6:1501010

    Article  Google Scholar 

  18. Liu X, Huang T, Yu A (2015) Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim Acta 163:82–92

    Article  CAS  Google Scholar 

  19. Lu C, Wu H, Zhang Y, Liu H, Chen B, Wu N, Wang S (2014) Cerium fluoride coated layered oxide Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691

    Article  CAS  Google Scholar 

  20. Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153:A1186–A1192

    Article  CAS  Google Scholar 

  21. Kang SH, Thackeray MM (2008) Stabilization of xLi2MnO3·(1−x)LiMO2 electrode surfaces (M= Mn, Ni, Co) with mildly acidic fluorinated solutions. J Electrochem Soc 155:A269–A275

    Article  CAS  Google Scholar 

  22. Wang D, Belharouak I, Ortega LH, Zhang X, Xu R, Zhou D, Zhou G, Amine K (2015) Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation. J Power Sources 274:451–457

    Article  CAS  Google Scholar 

  23. Fu F, Deng YP, Shen CH, Xu GL, Peng XX, Wang Q, Xu YF, Fang JC, Huang L, Sun SG (2014) A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery. Electrochem Commun 44:54–58

    Article  CAS  Google Scholar 

  24. He W, Yuan D, Qian J, Ai X, Yang H, Cao Y (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J. Mater Chem A 1:11397–11403

    Article  CAS  Google Scholar 

  25. Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode materials for Li-ion batteries. Electrochim. Acta 109:52–58

    Article  CAS  Google Scholar 

  26. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6:10330–10341

    Article  CAS  Google Scholar 

  27. Wang D, Huang Y, Huo Z, Chen L (2013) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim. Acta 107:461–466

    Article  CAS  Google Scholar 

  28. Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401

    Article  CAS  Google Scholar 

  29. Zhang WH, He W, Pei F, Wu FY, Mao RJ, Ai XP, Yang HX, Cao YL (2013) Improved electrochemical properties of Al3+-doped 0.5Li2MnO3-0.5LiCo1/3Ni1/3Mn1/3O2 cathode for lithium ion batteries. J Inorg Mater 28:1261–1264

    Article  CAS  Google Scholar 

  30. Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, Zhou XD, Wang YM (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Cr x ]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184

    Article  CAS  Google Scholar 

  31. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4:63268–63284

    Article  CAS  Google Scholar 

  32. Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim. Acta 80:187–195

    Article  CAS  Google Scholar 

  33. Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26

    Article  CAS  Google Scholar 

  34. He Z, Wang Z, Chen H, Huang Z, Li X, Guo H, Wang R (2015) Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources 299:334–341

    Article  CAS  Google Scholar 

  35. Xia Y, Shi S, Li C, Liang C, Gan Y, Huang H, Tao X, Zhang W (2015) Electrochemical properties of Sn-doped Li3V2(PO4)3 cathode material synthesized via a citric acid assisted sol-gel method. J Alloys Compd 652:298–306

    Article  CAS  Google Scholar 

  36. Ma J, Li B, Du H, Xu C, Kang F (2011) Effects of tin doping on physicochemical and electrochemical performances of LiFe1−xSnxPO4/C (0 ≤ x ≤ 0.07) composite cathode materials. Electrochim. Acta 56:7385–7391

    Article  CAS  Google Scholar 

  37. Ren H, Mu X, Huang Y, Li Z, Wang Y, Cai P, Peng Z, Zhou Y (2010) Effects of Sn doping on electrochemical characterizations of Li[Ni1/3Co1/3Mn1/3]O2 cathode material. Ionics 16:497–502

    Article  CAS  Google Scholar 

  38. Zhao Y, Xia M, Hu X, Zhao Z, Wang Y, Lv Z (2015) Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim. Acta 174:1167–1174

    Article  CAS  Google Scholar 

  39. Zhou L, Tian M, Deng Y, Zheng Q, Xu C, Lin D (2016) La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries. Ceram Int 42:15623–15633

    Article  CAS  Google Scholar 

  40. Zheng J, Wu X, Yang Y (2013) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim. Acta 105:200–208

    Article  CAS  Google Scholar 

  41. Sun L, Yi X, Ren X, Zhang P, Liu J (2016) Synthesis and electrochemical performances of Y-doped lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. J Electrochem Soc 163:A766–A772

    Article  CAS  Google Scholar 

  42. Han E, Li Y, Zhu L, Zhao L (2014) The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries. Solid State Ionics 255:113–119

    Article  CAS  Google Scholar 

  43. Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207

    Article  CAS  Google Scholar 

  44. Zhang Y, Hou P, Zhou E, Shi X, Wang X, Song D, Guo J, Zhang L (2015) Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: a new procedure to improve tap density of high-performance cathode material Li1.167(Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries. J Power Sources 292:58–65

    Article  CAS  Google Scholar 

  45. Ma D, Li Y, Zhang P, Cooper AJ, Abdelkader AM, Ren X, Deng L (2016) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J Power Sources 311:35–41

    Article  CAS  Google Scholar 

  46. Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater 6(21):1600906

    Article  Google Scholar 

  47. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Gu CD, Wang XL (2012) Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta 63:112–117

    Article  CAS  Google Scholar 

  48. Sun YY, Li F, Qiao QQ, Cao JS, Wang YL, Ye SH (2015) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries. Electrochim Acta 176:1464–1475

    Article  CAS  Google Scholar 

  49. Qiao QQ, Qin L, Li GR, Wang YL, Gao XP (2015) Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J Mater Chem A 3:17627–17634

    Article  CAS  Google Scholar 

  50. Lee E, Koritala R, Miller DJ, Johnson CS (2015) Aluminum and gallium substitution into 0.5Li2MnO3·0.5Li(Ni0.375Mn0.375Co0.25)O2 layered composite and the voltage fade effect. J Electrochem Soc 162(3):A322–A329

    Article  CAS  Google Scholar 

  51. Feng X, Gao Y, Ben L, Yang Z, Wang Z, Chen L (2016) Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317:74–80

    Article  CAS  Google Scholar 

  52. Zhang HZ, Li F, Pan GL, Li GR, Gao XP (2015) The effect of polyanion-doping on the structure and electrochemical performance of Li-rich layered oxides as cathode for lithium-ion batteries. J Electrochem Soc 162(9):A1899–A1904

    Article  CAS  Google Scholar 

  53. Chen M, Chen D, Liao Y, Zhong X, Li W, Zhang Y (2016) Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl Mater Interfaces 8:4575–4584

    Article  CAS  Google Scholar 

  54. Amalraj F, Talianker M, Markovsky B, Sharon D, Burlaka L, Shafir G, Zinigrad E, HaikO AD, Lampert J, Schulz-Dobrick M, Garsuch A (2013) Study of the lithium-rich integrated compound xLi2MnO3·(1-x)LiMO2 (x around 0.5; M= Mn, Ni, Co; 2: 2: 1) and its electrochemical activity as positive electrode in lithium cells. J Electrochem Soc 160(2):A324–A337

    Article  CAS  Google Scholar 

  55. Ates MN, Mukerjee S, Abraham KM (2014) A Li-rich layered cathode material with enhanced structural stability and rate capability for Li-on batteries. J Electrochem Soc 161(3):A355–A363

    Article  CAS  Google Scholar 

  56. Wang C, Zhou F, Chen K, Kong J, Jiang Y, Yan G, Li J, Yu C, Tang W (2015) Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. Electrochim Acta 176:1171–1181

    Article  CAS  Google Scholar 

  57. He W, Qian J, Cao Y, Ai X, Yang H (2012) Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv 2(8):3423–3429

    Article  CAS  Google Scholar 

  58. Li F, Sun YY, Yao ZH, Cao JS, Wang YL, Ye SH (2015) Enhanced initial coulombic efficiency of Li1.14Ni0.16Co0.08Mn0.57O2 cathode materials with superior performance for lithium-ion batteries. Electrochim Acta 182:723–732

    Article  CAS  Google Scholar 

  59. Yang S, Huang G, Hu S, Hou X, Huang Y, Yue M, Lei G (2014) Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater Lett 118:8–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the national college students’ innovation and entrepreneurship training program (201510636004), the outstanding graduate theses foundation of Sichuan Normal University (2016-4-32), and the large precision instrument projects of Sichuan Normal University (DJ2016-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Electronic supplementary material

Fig. S1

(DOCX 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Liu, J., Huang, L. et al. Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance. J Solid State Electrochem 21, 3467–3477 (2017). https://doi.org/10.1007/s10008-017-3688-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3688-y

Keywords

Navigation