Skip to main content
Log in

Aluminum sulfate—an electrolyte for MnO2 hybrid supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese oxide is an important emerging electrode material for use in supercapacitor applications. Herein, we propose a new aqueous electrolyte, Al2(SO4)3, for use with this type of supercapacitor. We hypothesize that the trivalent aluminum ion will demonstrate higher specific capacities because of its higher charge. We show that β-MnO2, which usually demonstrates low specific capacity (∼10 F g−1), is highly active in this electrolyte. At a scan rate of 2 mV s−1, a specific capacity of 185 F g−1 is demonstrated. An asymmetric cell is constructed from a positive β-MnO2 electrode and an activated carbon (AC) negative electrode. The cell exhibits an initial specific capacity of 42 F g−1 (calculated for the total AC and MnO2 mass), and a steady coulombic efficiency (97–98%), operating for 2500 cycles, after which a 20% drop from its initial capacity is measured. The cell displays higher values of specific capacitance when compared to a sodium sulfate electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  2. Cao J, Li X, Wang Y, Walsh FC, Ouyang J, Jia D, Zhou Y (2015) Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors. J Power Sources 293:657–674

    Article  CAS  Google Scholar 

  3. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484

    Article  CAS  Google Scholar 

  4. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy. Densities Adv Energy Mater 4:1300816

    Article  Google Scholar 

  5. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  6. Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2V manganese oxide activated carbon hybrid capacitor. Electrochem Solid State Lett 5:A227

    Article  CAS  Google Scholar 

  7. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  8. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139

    Article  CAS  Google Scholar 

  9. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850

    Article  CAS  Google Scholar 

  10. Xu C, Du H, Li B, Kang F, Zeng Y (2009) Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J Electrochem Soc 156:A435–A441

    Article  CAS  Google Scholar 

  11. Nayak PK, Munichandraiah N (2011) Reversible insertion of a trivalent cation onto MnO2 leading to enhanced capacitance. J Electrochem Soc 158:A585–A591

    Article  CAS  Google Scholar 

  12. Xu C, Du H, Li B, Kang F, Zeng Y (2009) Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations. J Electrochem Soc 156:A73–A78

    Article  CAS  Google Scholar 

  13. Xiao X, Song H, Lin S, Zhou Y, Zhan X, Hu Z, Zhang Q, Sun J, Yang B, Li T, Jiao L, Zhou J, Tang J, Gogotsi Y (2016) Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat Commun 7:11296

    Article  CAS  Google Scholar 

  14. Jiao H, Wang J, Tu J, Lei H, Jiao S (2016) Aluminum-ion asymmetric supercapacitor incorporating carbon nanotubes and an ionic liquid electrolyte: Al/AlCl3-[EMIm]Cl/CNTs. Energy Technol 4:1–8

    Article  Google Scholar 

  15. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 341:1502–1505

    Article  CAS  Google Scholar 

  16. Kuo S, Wu N (2006) Investigation of Pseudocapacitive charge-storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes. J Electrochem Soc 153:A1317–A1324

    Article  CAS  Google Scholar 

  17. Khomenko V, Raymundo-Piñero E, Béguin F (2006) Optimization of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. J Power Sources 153:183–190

    Article  CAS  Google Scholar 

  18. Dean JA (1998) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Peled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Peled, E. Aluminum sulfate—an electrolyte for MnO2 hybrid supercapacitor. J Solid State Electrochem 21, 3325–3331 (2017). https://doi.org/10.1007/s10008-017-3673-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3673-5

Keywords

Navigation