Skip to main content
Log in

Physical and photoelectrochemical characterizations of SrWO4 prepared by thermal decomposition. Application to the photo electro-oxidation of ibuprofen

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have reported the semi conducting and photoelectrochemical properties of SrWO4 prepared by chemical route. The phase purity is confirmed by X-ray diffraction and the oxide is characterized by scanning electron microscopy, diffuse reflectance, and electrochemical impedance spectroscopy. SrWO4 crystallizes in the scheelite structure with an average crystallite size of 378 ± 6 nm. The Raman spectrum gives an intense peak at 920 cm−1 assigned to A g mode while the infrared analysis confirms the hexagonal coordination of tungsten. The UV-visible spectroscopy shows an indirect optical transition at 2.60 eV. SrWO4 exhibits n-type conduction by oxygen deficiency, confirmed by the chrono-amperometry and the intensity potential J(E) curve shows a small hysteresis. The Mott-Schottky plot gives electrons density of 5.72 × 1018 cm−3 and a flat band potential of 0.27 VSCE, indicating that the conduction band derives mainly from W6+: 6s orbital. The electrochemical impedance spectroscopy (EIS), measured in the range (1–105 Hz), shows the predominance of the bulk contribution with a dark impedance of 38 kΩ cm2. As application, the ibuprofen is degraded by electrocatalysis on SrWO4 with a conversion rate of 42%. An improvement up to 77% has been obtained by electrophotocatalysis under UV light; the conversion follows a first order kinetic with a rate constant of 2.32 × 10−4 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aroutiounian VM, Arakelyan VM, Shahnazaryan GE, Stepanyan GM, Khachaturyan EA, Heli W, Turner JA (2006) Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3–Nb2O5. Sol Energy 80:1098–1111

    Article  CAS  Google Scholar 

  2. Kang FW, Hu Y, Chen L, Wang X, Wu H, Mu Z (2013) Luminescent properties of Eu3+ in MWO4 (M= Ca, Sr, Ba) matrix. J Luminescence 135:113–119

    Article  CAS  Google Scholar 

  3. Dong WK, In-Sun C, Seong SS, Sangwook L, Tae HN, Hoe Kim D, Jung HS, Hong KS (2011) Electronic band structures and photovoltaic properties of MWO4 (M= Zn, Mg, Ca, Sr) compounds. J Solid State Chem 184:2103–2107

    Article  Google Scholar 

  4. Šulc J, Jelínková H, Basiev TT, Doroschenko ME, Ivleva LI, Osiko VV, Zverev PG (2007) Nd: SrWO4 and Nd: BaWO4 Raman lasers. Opt Mater 30:195–197

    Article  Google Scholar 

  5. Shivakumara H, Rohit S, Sukanti B, Hananjaya N, Nagabhushana H (2015) Scheelite-type MWO4 (M= Ca, Sr, and Ba) nanophosphors: facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater Res Bull 61:422–432

    Article  CAS  Google Scholar 

  6. Chen D, Liu Z, Ouyang S, Ye J (2011) Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J Phys Chem 115:15778–15784

    CAS  Google Scholar 

  7. Sharma JC, Vijay A, Bhardwaj S (2013) Photocatalytic activity of a novel compound SrWO4: removal of toxic metal lead(II) from water. World Appli Scie J 23:208–212

    CAS  Google Scholar 

  8. Xiaoyan L, Yu N, Hongxun Y, Shengnan S, Yingying C, Tongyi Y, Shengling L (2016) Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite. Solid State Sci 55:130–137

    Article  Google Scholar 

  9. Boumaza S, Kaouah F, Hamane D, Trari M, Omeiri S, Bendjama Z (2014) Visible light assisted decolorization of azo dyes: direct red 16 and direct blue 71 in aqueous solution on the p-CuFeO2/n-ZnO system. J Mol Catalysis A: Chemical 393:156–165

    Article  CAS  Google Scholar 

  10. Hartmanova M, Le MT, Šmatko V, Kundracik F (2009) Structure and electrical conductivity of multicomponent metal oxides having scheelite structure. Russian J Electrochem 45:621–629

    Article  CAS  Google Scholar 

  11. Zhichao S, Yaoming W, Hanming D, Fuqiang H (2009) Structure-dependent photocatalytic activities of MWO4 (M = Ca, Sr, Ba). J Mol Catalysis A: Chemical 302:54–58

    Article  Google Scholar 

  12. Bouchaaba H, Bellal B, Maachi R, Trari M, Nasrallah N, Mellah A (2016) Optimization of physico-chemical parameters for the photo-oxidation of neutral red on the spinel Co2SnO4. J Taiwan Institute of Chem Engineers 58:310–317

    Article  CAS  Google Scholar 

  13. Rangappa D, Fujiwara T, Watanabe T, Yoshimura M (2006) Fabrication of AMO4 (A = Ba, Sr, Ca M= Mo, W) films on M substrate by solution reaction assisted ball rotation. J Electroceram 17:853–860

    Article  CAS  Google Scholar 

  14. Nasrallah N, Kebir M, Koudri Z, Trari M (2011) Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS. J Hazard Mater 185:1398–1404

    Article  CAS  Google Scholar 

  15. Dai W, Hai Xu H, Yu J, Hu X, Luo X, Tu X, Ya L (2015) Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appli Surf Sci 356:173–180

    Article  CAS  Google Scholar 

  16. Khettab M, Omeiri S, Sellam D, Ladjouzi MA, Trari M (2012) Characterization of LaNiO3 prepared by sol–gel: application to hydrogen evolution under visible light. Mater Chem Phys 132:625–630

    Article  CAS  Google Scholar 

  17. Singh BP, Singh RA, Maheshwary A (2016) Effect of annealing on the structural, optical and emissive properties of SrWO4: Ln3+ (Dy3+, Eu3+ and Sm3+) nanoparticles. Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy 152:199–207

    Article  Google Scholar 

  18. Thongtem T, Phuruangrat A, Thongtem S (2008) Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Curr Appl Phys 8:189–197

    Article  Google Scholar 

  19. Suda J, Zverev PG (2016) Investigation of band gap effect and dephasing on Raman line broadening for the highest-frequency A g mode in comparison with SrWO4 and SrMoO4. Vib Spectrosc 84:127–132

    Article  CAS  Google Scholar 

  20. Christofilos D, Papagelis K, Ves S, Kourouklis GA, Raptis C (2002) High-pressure Raman study and lattice dynamical calculations for SrWO4. J Phys Condens Matter 14:12641–12650

    Article  CAS  Google Scholar 

  21. Lacomba-Perales R, Errandonea D, Segura A, Ruiz-Fuertes J, Rodríguez-Hernández P, Radescu S, López-Solano J, Mujica A, Muñoz A (2011) A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds. J Appl Phys 110:043703

    Article  Google Scholar 

  22. Lacomba-Perales R, Ruiz-Fuertes J, Errandonea D, Martínez-García D, Segura A (2008) Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. EPL 83:37002

    Article  Google Scholar 

  23. PFS P, Nogueira IC, Longo E, Nassar EJ, ILV R, Cavalcante LS (2015) Rietveld refinement and optical properties of SrWO4: Eu3+ powders prepared by the non-hydrolytic sol-gel method. J Rare Earths 33:113–128

    Article  Google Scholar 

  24. Aslam M, Tahir Soomro M, Ismail IMI, Salah N, Waqar Ashraf M, Qari HA, Hameed A (2015) The performance of silver modified tungsten oxide for the removal of 2-CP and 2-NP in sunlight exposure: optical, electrochemical and photocatalytic properties. Arabian J Chemistry. doi:10.1016/j.arabjc.2015.05.001

    Google Scholar 

  25. Bellal B, Hadjarab B, Benreguia N, Bessekhouad Y, Trari M (2011) Photoelectrochemical characterization of the synthetic crednerite CuMnO2. J Appli Electrochem 41:867–872

    Article  CAS  Google Scholar 

  26. Helaïli N, Bessekhouad Y, Bouguelia A, Trari M (2010) P-Cu2O/n-ZnO heterojunction applied to visible light orange II degradation. Sol Energy 84:1187–1192

    Article  Google Scholar 

  27. Boutal N, Rekhila G, Taïbi K, Trari M (2014) Relaxor ferroelectric and photo-electrochemical properties of lead-free Ba1−xEu2x/3(Ti0.75Zr0.25)O3 ceramics: application to chromate reduction. Sol Energy 99:291–298

    Article  CAS  Google Scholar 

  28. Barzgari Z, Askari SA, Ghazizadeh A (2015) Solar photocatalytic activity of chemical solution-prepared barium tungstate nanostructures. Mater Scie Semiconductor Process 33:36–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pr. M. Azzaz for the X-ray diffraction in the Laboratory of Sciences and Materials Engineering (USTHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Electronic supplementary material

ESM 1

(DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmi, A., Bensadok, K., Zirour, H. et al. Physical and photoelectrochemical characterizations of SrWO4 prepared by thermal decomposition. Application to the photo electro-oxidation of ibuprofen. J Solid State Electrochem 21, 2817–2824 (2017). https://doi.org/10.1007/s10008-017-3599-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3599-y

Keywords

Navigation