Skip to main content
Log in

From current peaks to waves and capacitive currents—on the origins of capacitor-like electrode behavior

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Terminology of electrodes and electrode materials used in supercapacitors as well as naming of electrode processes and devices prepared with these electrodes is confusing and rather unregulated. Consequently, misunderstanding in communication about research and development is somehow matched with an incomplete understanding of the reasons of the observed capacitive, pseudocapacitive, or Faradaic behavior. Observed and investigated phenomena relevant for supercapacitor electrodes are briefly reviewed and explained in terms of electrode processes and interfacial phenomena. Further research possibly useful in more fundamental understanding and rational improvement of materials is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. C DL is different from the integral double layer capacitance C D = dQ/(E − E pzc); the latter is invoked only infrequently. Both quantities are related according to: C DL = (E − E pzc) (dC D/dE) + C D

  2. The terms supercapacitor™ (as well as ultracap/ultracapacitor) or abbreviated supercap (SC) seemingly lack a generally accepted, proper definition. At first glance, it appears sufficient to assume that capacitors based on the capacitive properties of the electrochemical double layer instead of a dielectric material like Al2O3 or Ta2O5 showing huge capacities are correctly called supercapacitors. Temporarily, the latter term was trademarked (from August 1978 on) to NEC Corporation; currently, this protection has apparently expired. The acronym SC seems to be too short to enable immediate identification. Acronyms like ES for electrochemical supercapacitor or FS for Faradaic supercapacitor do nothing beyond enlarging the confusion. Recently, this device wherein purely electrostatic charge storage in the double layer is operative has been frequently called electrochemical double layer capacitor (EDLC). Thus, it appears to be reasonable to call devices, wherein charge storage is based both on electrostatic charge separation (like in an EDLC) and on Faradaic redox processes (pseudocapacity) supercapacitors. Because of the combination of these fundamentally different charge storage mechanisms, these devices are also sometimes called hybrids—adding further to the confusion. A device wherein two effects or mechanisms are utilized is not necessarily a hybrid one—when both effects as in most SCs act only in addition to each other. In the present report, supercapacitors are such “hybrid devices”; the term ultracapacitor is not used at all. Its use to designate only those devices employing pseudocapacitances seems to be a loosing proposition [A. Burke, J. Power Sources 91, 37 (2000)]. The statement that Conway coined the term supercapacitor in 1991 is apparently erroneous. The rich collection of terms—some of them presumably protected by trademarks—does not help really: APowerCap, BestCap, BoostCap, CAP-XX, DLCAP, EneCapTen, EVerCAP, DynaCap, Faradcap, GreenCap, Goldcap, HY-CAP, Kapton capacitor, Supercapacitor, SuperCap, PAS Capacitor, PowerStor, PseudoCap, etc.

  3. In this study, Na2SO4 was used as an electrolyte; other alkali ions can be used instead also.

  4. Assignment of a species to any of these classes was based on spectroscopic evidence certainly not applicable here; more recently observations from CV have been utilized at least for a rough classification.

  5. Simulation was done with software Polar 4.1 for Windows, Dr. Huang Pty Ltd., Sydney, Australia.

  6. This state is frequently and erroneously called the reduced one. A reduced one would correctly be reached by reduction of the neutral one (the leucoemeraldine state). This has not been observed so far with PANI.

References

  1. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  2. Nicholson RS, Shain I (1965) Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfers. Anal Chem 37:178–190

    Article  CAS  Google Scholar 

  3. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  4. Gosser DK Jr (1993) Cyclic Voltammetry. VCH, New York

    Google Scholar 

  5. Noel M, Vasu KI (1990) Cyclic voltammetry and the frontiers of electrochemistry. Oxford & IBH Publishing Co., New Delhi

    Google Scholar 

  6. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  7. Conway BE, Gileadi E (1962) Trans Faraday Soc 58:2493–2509

    Article  CAS  Google Scholar 

  8. Conway BE, Pell WG (2003) J Solid State Electrochem 7:637–644

    Article  CAS  Google Scholar 

  9. Kurzweil P (2009) Electrochemical capacitors, encyclopedia of electrochemical power sources Vol. 3. In: Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (eds) . Elsevier, Amsterdam, pp. 596–606

    Chapter  Google Scholar 

  10. Dubal DP, Holze R (2014) Pure&Appl Chem 86:611–632

    CAS  Google Scholar 

  11. Dubal DP, Wu Y, Holze R (2016) ChemTexts 2:13

    Article  Google Scholar 

  12. Dubal DP, Wu Y, Holze R (2015) Bunsen-Magazin 17:216–227

    Google Scholar 

  13. Kurzweil P (2009) Capacitors: electrochemical double-layer capacitors, encyclopedia of electrochemical power sources Vol. 1. In: Garche J, Dyer CK, Moseley PT, Ogumi Z, DAJ R, Scrosati B (eds) . Elsevier, Amsterdam, pp. 607–633

    Chapter  Google Scholar 

  14. Kurzweil P (2009) Capacitors: electrochemical double-layer capacitors: carbon materials, encyclopedia of electrochemical power sources Vol. 1. In: Garche J, Dyer CK, Moseley PT, Ogumi Z, DAJ R, Scrosati B (eds) . Elsevier, Amsterdam, pp. 634–648

    Google Scholar 

  15. Borchardt L, Oschatz M, Kaskel S (2014) Mater Hor 1:157–168

    Article  CAS  Google Scholar 

  16. Zhang LL, Gu Y, Zhao XS (2013) J Mater Chem A 1:9395–9408

    Article  CAS  Google Scholar 

  17. Lee J, Kim J, Hyeon T (2006) Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  18. Liu S, Sun S, You XZ (2014) Nanoscale 6:2037–2045

    Article  CAS  Google Scholar 

  19. Su DS, Schlögl R (2010) ChemSusChem 3:136–168

    Article  CAS  Google Scholar 

  20. Beguin F, Presser V, Balducci A, Frackowiak A (2014) Adv Mater 26:2219–2251

    Article  CAS  Google Scholar 

  21. Davies A, Yu A (2011) Can J Chem Engin 89:1342–1357

    Article  CAS  Google Scholar 

  22. Ghosh A, Lee YH (2012) ChemSusChem 5:480–499

    Article  CAS  Google Scholar 

  23. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  24. Frackowiak E, Abbas Q, Beguin F (2013) J Energy Chem 22:226–240

    Article  CAS  Google Scholar 

  25. Jiang H, Lee PS, Li C (2013) Energy Environm Sci 6:41–53

    Article  CAS  Google Scholar 

  26. Dutta S, Bhaumik A, Wu KCW (2014) Energy Environm Sci 7:3574–3592

    Article  CAS  Google Scholar 

  27. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) J Mater Chem 22:767–784

    Article  CAS  Google Scholar 

  28. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New York

    Book  Google Scholar 

  29. Galizzioli D, Tantardini F, Trasatti S (1974) J Appl Electrochem 4:57–67

    Article  CAS  Google Scholar 

  30. Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  31. Hu CC, Tsou TW (2002) Electrochem Commun 4:105–109

    Article  CAS  Google Scholar 

  32. Chun SE, Pyun SI, Lee GJ (2006) Electrochim Acta 51:6479–6486

    Article  CAS  Google Scholar 

  33. Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Electrochim Acta 53:4607–4614

    Article  CAS  Google Scholar 

  34. Damaskin BB, Petrii OA, Batrakov VV (1975) Adsorption organischer Verbindungen an Elektroden. Akademie-Verlag, Berlin

    Google Scholar 

  35. Brousse T, Belanger D, Long JW (2015) J Electrochem Soc 162:A5185–A5189

    Article  CAS  Google Scholar 

  36. Robin MB, Day P (1967) Adv Inorg Radiochem 10:247–422

    Article  CAS  Google Scholar 

  37. Leschke M, Lang H, Holze R (2003) J Solid State Electrochem 7:518–524

    Article  CAS  Google Scholar 

  38. Weiß T, Lang H, Holze R (2002) J Electroanal Chem 533:127–133

    Article  Google Scholar 

  39. Stein T, Lang H, Holze R (2002) J Electroanal Chem 520:163–167

    Article  CAS  Google Scholar 

  40. Leschke M, Lang H, Holze R (2003) Electrochim Acta 48:919–924

    Article  CAS  Google Scholar 

  41. Hubbard AT, Anson F (1970) Electroanalytical chemistry. A series of advances. In: Bard AJ (ed) , vol 4. Marcel Dekker, New York, pp. 129–214

    Google Scholar 

  42. Lane RF, Hubbard AT (1978) J Phys Chem 77:1401–1410

    Article  Google Scholar 

  43. Laviron E (1979) J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  44. Angerstein-Kozlowska H, Klinger J, Conway BE (1977) J Electroanal Chem 75:45–60

    Article  CAS  Google Scholar 

  45. Angerstein-Kozlowska H, Klinger J, Conway BE (1977) J Electroanal Chem 75:61–75

    Article  CAS  Google Scholar 

  46. Schreurs J, Barendrecht E (1984) Rec Trav Chim Pays-Bas 103:205–215

    Article  CAS  Google Scholar 

  47. Burke LD, Morrissey JA (1994) J Electrochem Soc 141:2361–2368

    Article  CAS  Google Scholar 

  48. Burke LD (1994) Electrochim Acta 39:1841–1848

    Article  CAS  Google Scholar 

  49. Burke LD, Casey JK (1992) Electrochim Acta 37:1817–1829

    Article  CAS  Google Scholar 

  50. Burke LD, Buckley DT, Morrissey JA (1994) Analyst 119:841–845

    Article  CAS  Google Scholar 

  51. Burke LD, Casey JK, Cunnane VJ, Murphy OJ, Twomey TAM (1985) J Electroanal Chem 189:353–362

    Article  CAS  Google Scholar 

  52. Young MJ, Holder AM, George SM, Musgrave CB (2015) Chem Mater 27:1172–1180

    Article  CAS  Google Scholar 

  53. Holze R (2001) Handbook of advanced electronic and photonic materials and devices, Vol. 8. In: Nalwa HS (ed) . Academic Press, San Diego, pp. 209–301

    Chapter  Google Scholar 

  54. Holze R (2001) Advanced functional molecules and polymers, Vol. 2. In: Nalwa HS (ed) . Gordon&Breach, Amsterdam, pp. 171–221

    Google Scholar 

  55. Cui CQ, Ong LH, Tan TC, Lee JY (1993) J Electroanal Chem 346:477–482

    Article  CAS  Google Scholar 

  56. Brandl V, Holze R (1997) Ber Bunsenges Phys Chem 101:251–256

    Article  CAS  Google Scholar 

  57. Heinze J (1990) Topics in current chemistry Vol. 152. Springer, Berlin Heidelberg, pp. 1–45

    Google Scholar 

  58. for an earlier overview see: Heinze J, Mortensen J, Störzbach M (1987) Springer series in solid state Sci. In: Kuzmany H,  Roth S (eds) Electronic properties of conjugated polymers, vol 76. Springer-Verlag, Berlin, p, 385–390

  59. Bull RA, Bard AJ, Fan FRF (1982) J Electrochem Soc 129:1009–1015

    Article  CAS  Google Scholar 

  60. Diaz AF, Castillo JI, Logan JA, Lee WA (1981) J Electroanal Chem 129:115–132

    Article  CAS  Google Scholar 

  61. Feldberg SW (1984) J Am Chem Soc 106:4671–4674

    Article  CAS  Google Scholar 

  62. Jakobs RCM, Janssen LJJ, Barendrecht E (1984) Rec Trav Chim Pays-Bas 103:275–281

    Article  CAS  Google Scholar 

  63. Bandeira MCE, Holze R (2006) Microchim Acta 156:125–131

    Article  CAS  Google Scholar 

  64. Yan J, Yang L, Cui M, Wang X, Chee KJ, Nguyen VC, Kumar V, Sumboja A, Wang M (2014) Adv Energ Mater 4:400781

    Google Scholar 

  65. Heinze J, Störzbach M, Mortensen J (1987) Ber Bunsenges Phys Chem 91:960–967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Preparation of this note has been supported by a travel grant from Deutsche Forschungsgemeinschaft. The generous hospitality of Amartya Mukhopadhyay, Department of Metallurgical Engineering and Materials Science, IIT Bombay, India, with its stimulating environment and inspiring discussions is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Additional information

Dedicated to Chandrakant D. Lokhande on the occasion of his 60th birthday in recognition of his major contributions to thin film science: from preparation to applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holze, R. From current peaks to waves and capacitive currents—on the origins of capacitor-like electrode behavior. J Solid State Electrochem 21, 2601–2607 (2017). https://doi.org/10.1007/s10008-016-3483-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3483-1

Keywords

Navigation