Skip to main content
Log in

One-pot fabrication of single-crystalline octahedral Pd-Pt nanocrystals with enhanced electrocatalytic activity for methanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This study reports the synthesis of octahedral Pd-Pt bimetallic alloy nanocrystals through a facile, one-pot, templateless, and seedless hydrothermal method in the presence of glucose and hexadecyl trimethyl ammonium bromide. The morphologies, compositions, and structures of the Pd-Pt nanocrystals were fully characterized by various physical techniques, thereby demonstrating their highly alloying octahedral nanostructures. The formation or growth mechanism of the Pd-Pt bimetallic alloy nanocrystals was explored and is discussed here based on the experimental observations. In addition, the synthesized Pd-Pt nanocrystals were applied to the methanol oxidation reaction (MOR) in alkaline media, which proved that the as-prepared catalysts exhibit enhanced electrocatalytic activity for MOR. Pd1Pt3 exhibited the best stability and durability, and its mass activity was 3.4 and 5.2 times greater than those of Pt black and Pd black catalysts, respectively. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they have the potential to be used in direct methanol fuel cell techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3
Fig. 4a–f
Fig. 5a–f
Fig. 6a–d
Scheme 1
Fig. 7
Fig. 8a–e
Fig. 9
Fig. 10a–c

Similar content being viewed by others

References

  1. Wang W, Wang D, Liu X, Liu X, Peng Q, Li Y (2013) Pt–Ni nanodendrites with high hydrogenation activity. Chem Commun 49:2903–2905

    Article  CAS  Google Scholar 

  2. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  3. Wu B, Zheng N, Fu G (2011) Small molecules control the formation of Pt nanocrystals: a key role of carbon monoxide in the synthesis of Pt nanocubes. Chem Commun 47:1039–1041

    Article  CAS  Google Scholar 

  4. Lv J, Zheng J, Li S, Chen L, Wang A, Feng J (2014) Facile synthesis of Pt-Pd nanodendrites and their superior electrocatalytic activity. J Mater Chem A 2:4384–4390

    Article  CAS  Google Scholar 

  5. Mazumder V, Chi M, More KL, Sun S (2010) Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J Am Chem Soc 132:7848–7849

    Article  CAS  Google Scholar 

  6. Guo S, Li J, Dong S, Wang E (2010) Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle: one-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties. J Phys Chem C 114:15337–15342

  7. Lu N, Wang J, Xie S, Brink J, Mcllwrath K, Xia Y, Kim MJ (2014) Aberration corrected electron microscopy study of bimetallic Pd–Pt nanocrystal: core-shell cubic and core-frame concave structures. J Phys Chem C 118:28876–28882

    Article  CAS  Google Scholar 

  8. Xie S, Choi S, Lu N, Roling LT, Herron JA, Zhang L, Park J, Wang J, Kim MJ, Xie Z, Mavrikakis M, Xia Y (2014) Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett 14:3570–3576

    Article  CAS  Google Scholar 

  9. Matin MA, Jang JH, Kwon YU (2014) One-pot sonication-assisted polyol synthesis of trimetallic core-shell (Pd, Co)@Pt nanoparticles for enhanced electrocatalysis. Int J Hydrogen Energy 39:3710–3718

    Article  CAS  Google Scholar 

  10. Gong M, Fu G, Chen Y, Tang Y, Lu T (2014) Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl Mater Interfaces 6:7301–7308

  11. Wang S, Kuai L, Huang Y, Xue Y, Liu Y, Li W, Chen L, Geng B (2013) A highly efficient, clean-surface, porous platinum electrocatalyst and the inhibition effect of surfactants on catalytic activity. Chem-Eur J 19:240–248

  12. Zhang H, Jin M, Xia Y (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049

    Article  CAS  Google Scholar 

  13. Xia B, Wu H, Wang X, Wen X, Lou X (2012) One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J Am Chem Soc 134:13934–13937

    Article  CAS  Google Scholar 

  14. Ataee-Esfahani H, Imura M, Yamauchi Y (2013) All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface. Angew Chem Int Ed 52:13611–13615

  15. Wang L, Yamauchi Y (2013) Metallic nanocages: synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J Am Chem Soc 135:16762–16765

    Article  CAS  Google Scholar 

  16. Liu W, Rodriguez P, Borchardt L, Foelske A, Yuan J, Herrmamm A, Geiger D, Zheng Z, Kaskel S, Gaponik N, Kötz R, Schmidt TJ, Eychmüller A (2013) Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 52:9849–9852

  17. Mednikov EG, Jewell MC, Dahl LF, Mednikov EG, Jewell MC, Dahl LF (2007) Nanosized (μ12-Pt)Pd164−x Pt x (CO)72(PPh3)20 (x ≈ 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO) x (PEt3)30 (x ≈ 60) containing capped three-shell Pd145 core. J Am Chem Soc 129:11619–11630

  18. Yin A, Min X, Zhang Y, Yan C (2011) Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J Am Chem Soc 133:3816–3819

    Article  CAS  Google Scholar 

  19. Zhang Z, Hui J, Guo Z, Yu Q, Xu B, Zhang X, Liu Z, Xu C, Gao J, Wang X (2012) Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities. Nanoscale 4:2633–2639

    Article  CAS  Google Scholar 

  20. Lim B, Jiang M, Camargo P, Cho E, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  Google Scholar 

  21. Choi I, Ahn SH, Kim JJ, Kwon OJ (2011) Preparation of Ptshell–Pdcore nanoparticle with electroless deposition of copper for polymer electrolyte membrane fuel cell. Appl Catal B 102:608–613

    Article  CAS  Google Scholar 

  22. Koenigsmann C, Santulli AC, Gong K, Vukmirovic MB, Zhou W, Sutter E, Wong SS, Adzic RR (2011) Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core-shell nanowire catalysts for the oxygen reduction reaction. J Am Chem Soc 133:9783–9795

    Article  CAS  Google Scholar 

  23. Yu EH, Scott K, Reeve RW (2003) A study of the anodic oxidation of methanol on Pt in alkaline solutions. J Electroanal Chem 547:17–24

    Article  Google Scholar 

  24. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675

    Article  CAS  Google Scholar 

  25. Jing M, Jiang L, Yi B, Sun G (2013) Comparative study of methanol adsorption and electro-oxidation on carbon-supported platinum in acidic and alkaline electrolytes. J Electroanal Chem 688:172–179

    Article  CAS  Google Scholar 

  26. Kadirgan F, Beden B, Leger JM, Lamy C (1981) Synergistic effect in the electrocatalytic oxidation of methanol on platinum + palladium alloy electrodes. J Electroanal Chem 125:89–103

    Article  CAS  Google Scholar 

  27. Maksic A, Rakocevic Z, Smiljanic M, Nenadovic M, Strbac S (2015) Methanol oxidation on Pd/Pt(poly) in alkaline solution. J Power Sources 273:724–734

    Article  CAS  Google Scholar 

  28. Li S-S, Zheng J-N, Ma X, Hu Y-Y, Wang A-J, Chen J-R, Feng J-J (2014) Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties. Nanoscale 6:5708–5713

    Article  CAS  Google Scholar 

  29. Lu Y, Jiang Y, Wu H, Chen W (2013) Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J Phys Chem C 117:2926–2938

    Article  CAS  Google Scholar 

  30. Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed 49:4962–4966

    Article  CAS  Google Scholar 

  31. Neppolian B, Sáez V, González-García J, Grieser F, Gómez R, Ashokkumar M (2014) Sonochemical synthesis of graphene oxide supported Pt-Pd alloy nanocrystals as efficient electrocatalysts for methanol oxidation. J Solid State Electrochem 18:3163–3171

    Article  CAS  Google Scholar 

  32. Gong K, Park J, Su D, Adzic RR (2014) Metalizing carbon nanotubes with Pd–Pt core–shell nanowires enhances electrocatalytic activity and stability in the oxygen reduction reaction. J Solid State Electrochem 18:1171–1179

    Article  CAS  Google Scholar 

  33. Limpattayanate S, Hunsom M (2013) Effect of supports on activity and stability of Pt–Pd catalysts for oxygen reduction reaction in proton exchange membrane fuel cells. J Solid State Electrochem 17:1221–1231

    Article  CAS  Google Scholar 

  34. Lee YW, Ko AR, Kim DY, Han SB, Park KW (2012) Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC Adv 2:1119–1125

    Article  CAS  Google Scholar 

  35. Veisz B, Tóth L, Teschner D, Paál Z, Gyȍrffy N, Wild U, Schlögl R (2005) Palladium-platinum powder catalysts manufactured by colloid synthesis: I. Preparation and characterization. J Mol Catal A 238:56–62

    Article  CAS  Google Scholar 

  36. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402

    Article  CAS  Google Scholar 

  37. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  CAS  Google Scholar 

  38. Liao H, Cui L, Whitelam S, Zheng H (2012) Real-time imaging of Pt3Fe nanorod growth in solution. Science 336:1011–1014

    Article  CAS  Google Scholar 

  39. Wang F, Li C, Sun LD, Xu CH, Wang J, Yu JC, Yan CH (2012) Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew Chem Int Ed 51:4872–4876

  40. Watt J, Cheong S, Toney MF, Ingham B, Cookson J, Bishop PT, Tilley RD (2009) Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano 4:396–402

  41. Zheng J-N, Li S-S, Ma X, Chen F-Y, Wang A-J, Chen J-R, Feng J-J (2014) Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J Power Sources 262:270–278

    Article  CAS  Google Scholar 

  42. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A (2002) A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 4:599–603

    Article  CAS  Google Scholar 

  43. Zhang Y, Janyasupab M, Liu C, Li X, Xu J, Liu C (2012) Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells. Adv Funct Mater 22:3570–3575

    Article  CAS  Google Scholar 

  44. Chu Y-Y, Wang Z-B, Jiang Z-Z, Gu D-M, Yin G-P (2012) Facile synthesis of hollow spherical sandwich PtPd/C catalyst by electrostatic self-assembly in polyol solution for methanol electrooxidation. J Power Sources 203:17–25

    Article  CAS  Google Scholar 

  45. Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651

    Article  CAS  Google Scholar 

  46. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24

    Article  CAS  Google Scholar 

  47. Liu L, Pippel E, Scholz R, Gosele U (2009) Nanoporous Pt-Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett 9:4352–4358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (nos. 51471153 and 51372227), the Natural Science Foundation of Zhejiang Province (no. LY14E020011), and the 521 Talent Project of Zhejiang Sci-Tech University for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Sheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Xu, W., Cui, W. et al. One-pot fabrication of single-crystalline octahedral Pd-Pt nanocrystals with enhanced electrocatalytic activity for methanol oxidation. J Solid State Electrochem 21, 391–401 (2017). https://doi.org/10.1007/s10008-016-3370-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3370-9

Keywords

Navigation