Skip to main content
Log in

Synthesis and electrochemical investigation of beta-substituted thiophene-based donor–acceptor copolymers with 3,4-ethylenedioxythiophene (EDOT)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work reports the synthesis of four electron-acceptor beta-substituted thiophenes that were studied as monomers for electrochemical polymerization with 3,4-ethylenedioxythiophene (EDOT), an electron-donating monomer, aiming the combination of electron-acceptor and donor monomer thiophene to a simpler and convenient build up of novel donor–acceptor copolymeric materials via electrochemical polymerization. Four novel copolymers poly(EDOT-co-3-thiophene phenylacetate), (PEDOT-co-PPhTAc-2a), poly(EDOT-co-3-thiophene(4-nitrophenyl)acetate) (PEDOT-co-PPhTAc-2b), poly(EDOT-co-3-thiophenephenylcarboxylate) (PEDOT-co-PPhTCb), and poly(EDOT-co-3-(phenoxymethyl)thiophene) (PEDOT-co-PPhOMT) were electrochemically polymerized. The monomers were characterized by spectrometric techniques (FTIR, 1H NMR, and 13C NMR), and the copolymers were identified by electrochemical analyses and FT-IR. Although the corresponding homopolymers could not be obtained, in the presence of EDOT, the copolymers were formed in a quasi-reversible electrochemical kinetics. The infrared spectra of the copolymers as well the electrochemical profile corroborates their obtaining. The mass variation during the electrosynthesis was analyzed using a quartz crystal microbalance. The film’s morphologies were investigated by SEM. Interestingly, the combination of electron-rich monomer thiophene (EDOT) and these electron-deficient carboxy-substituted thiophenes might be a convenient building block couple to increase the performance control of physic-chemical properties of mixed polythiophenes with innovative applications and they also showed a possible applicability as charge storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Edit 40(14):2575–2580

    Article  CAS  Google Scholar 

  2. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Edit 40(14):2581–2590

    Article  CAS  Google Scholar 

  3. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (nobel lecture). Angew Chem Int Edit 40(14):2591–2611

    Article  CAS  Google Scholar 

  4. MacDiarmid AG (2001) Chemistry in New Zeland, vol 65

    Google Scholar 

  5. Vasilyeva SV, Beaujuge PM, Wang SJ, Babiarz JE, Ballarotto VW, Reynolds JR (2011) Material strategies for black-to-transmissive window-type polymer electrochromic devices. ACS Appl Mater Interfaces 3(4):1022–1032

    Article  CAS  Google Scholar 

  6. Beaujuge PM, Reynolds JR (2010) Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev 110(1):268–320

    Article  CAS  Google Scholar 

  7. Z-y Z, Y-j T, Xu X-q, Y-j Z, Cheng H-f, Zheng W-w (2012) Electrosynthesises and characterizations of copolymers based on thiophene and 3,4-ethylenedioxythiophene in boron trifluoride diethyl etherate. Synt Met 162(23):2176–2181

    Article  Google Scholar 

  8. Ming S, Zhang S, Liu H, Zhao Y, Mo D, Xu J (2015) Methacrylate modified polythiophene: electrochemistry and electrochromics. Int J Electrochem Sci 10(8):6598–6609

    CAS  Google Scholar 

  9. Lee JU, Jung JW, Emrick T, Russell TP, Jo WH (2010) Synthesis of C(60)-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J Mater Chem 20(16):3287–3294

    Article  CAS  Google Scholar 

  10. Lanzi M, Salatelli E, Benelli T, Caretti D, Giorgini L, Di-Nicola FP (2015) A regioregular polythiophene-fullerene for polymeric solar cells. J Appl Polym Sci 132(25):10

    Article  Google Scholar 

  11. Kim JH, Park JG (2015) Effect of donor weight in a P3HT:PCBM blended layer on the characteristics of a polymer photovoltaic cell. J Korean Phys Soc 66(11):1720–1725

    Article  CAS  Google Scholar 

  12. Vashchenko AA, Vitukhnovsky AG, Taidakov IV, Tananaev PN, Vasnev VA, Rodlovskaya EN, Bychkovsky DN (2014) Organic light-emitting devices with multi-shell quantum dots connected with polythiophene derivatives. Semiconductors 48(3):377–380

    Article  CAS  Google Scholar 

  13. Zhen S, Ma X, Lu B, Ming S, Lin K, Zhao L, Xu J, Zhou W (2014) Supercapacitor electrodes based on furan-EDOT copolymers via electropolymerization. Int J Electrochem Sci 9(12):7518–7527

    Google Scholar 

  14. Zhu LM, Shi W, Zhao RR, Cao YL, Ai XP, Lei AW, Yang HX (2013) n-Dopable polythiophenes as high capacity anode materials for all-organic Li-ion batteries. J Electroanal Chem 688:118–122

    Article  CAS  Google Scholar 

  15. Ates M, Arican F (2015) Electrocoated films of poly(N-methylpyrrole-co-2,2’-bithitiophene-co-3-(octylthiophene)), characterizations, and capacitor study. Int J Polym Mater Polym Biomater 64(3):125–133

    Article  CAS  Google Scholar 

  16. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  CAS  Google Scholar 

  17. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622

    Article  CAS  Google Scholar 

  18. Chen SA, Tsai CC (1993) Structure/properties of conjugated conductive polymers. 2. 3-ether-substituted polythiophenes and poly(4-methylthiophenes). Macromolecules 26(9):2234–2239

    Article  CAS  Google Scholar 

  19. Calado HDR, Matencio T, Donnici CL, Cury LA, Rieumont J, Pernaut JM (2008) Synthesis and electrochemical and optical characterization of poly(3-octadecylthiophene). Synt Met 158(21-24):1037–1042

    Article  CAS  Google Scholar 

  20. Sotzing GA, Reynolds JR, Steel PJ (1996) Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem Mater 8(4):882–889

  21. Mert O, Sahin E, Ertas E, Ozturk T, Aydin EA, Toppare L (2006) Electrochromic properties of poly(diphenyldithieno 3,2-b; 2 ’,3 ’-d thiophene). J Electroanal Chem 591(1):53–58

    Article  CAS  Google Scholar 

  22. Alves MRA, Calado HDR, Donnici CL, Matencio T (2010) Electrochemical polymerization and characterization of new copolymers of 3-substituted thiophenes. Synt Met 160(1-2):22–27

    Article  CAS  Google Scholar 

  23. Tang HQ, Zhou ZX, Zhong YB, Liao HX, Zhu LH (2006) Electropolymerization of 3-methylthiophene in the presence of a small amount of bithiophene and its usage as hole transport layer in organic light emitting diodes. Thin Solid Films 515(4):2447–2451

    Article  CAS  Google Scholar 

  24. Oliver R, Munoz A, Ocampo C, Aleman C, Armelin E, Estrany F (2006) Electrochemical characteristics of copolymers electrochemically synthesized from N-methylpyrrole and 3,4-ethylenedioxythiophene on steel electrodes: comparison with homopolymers. Chem Phys 328(1-3):299–306

    Article  CAS  Google Scholar 

  25. Bundgaard E, Krebs FC (2006) Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole). Macromolecules 39(8):2823–2831

    Article  CAS  Google Scholar 

  26. Alves MRA, Calado HDR, Donnici CL, Matencio T (2011) Synthesis and characterization of new 3-substituted thiophene copolymers. J Braz Chem Soc 22(2):248–256

    Article  CAS  Google Scholar 

  27. Ozel M, Osken I, Ozturk T (2015) Syntheses and electronic properties of new type of donor-acceptor type copolymers for solar cell applications. Phosphorus Sulfur 190(8):1216–1218

    Article  CAS  Google Scholar 

  28. Hariharan A, Subramanian K, Alagar M, Dinakaran K (2015) Conjugated donor-acceptor copolymers derived from phenylenevinylene and trisubstituted pyridine units: synthesis, optical, and electrochemical properties. High Perform Polym 27(6):724–733

    Article  CAS  Google Scholar 

  29. Chen X, Guo K, Li F, Qiao H, Liu T, Ye Y, Xing C, Li J (2015) Synthesis and properties of benzodipyrrolidone (BDP)-based donor-acceptor copolymers. J Macromol Sci Pure Appl Chem 52(7):517–522

    Article  CAS  Google Scholar 

  30. Jeux V, Segut O, Demeter D, Rousseau T, Allain M, Dalinot C, Sanguinet L, Leriche P, Roncali J (2015) One step synthesis of D-A-D chromophores as active materials for organic solar cells by basic condensation. Dyes Pigm 113:402–408

    Article  CAS  Google Scholar 

  31. Kumaresan P, Liu YY, Vegiraju S, Ezhumalai Y, Yu HC, Yau SL, Chen MC, Lin TC (2015) Synthesis and characterization of two-photon active chromophores based on tetrathienoacene (TTA) and dithienothiophene (DTT). Chem Asian J 10(8):1640–1646

    Article  CAS  Google Scholar 

  32. Zhang K, Tieke B, Forgie JC, Vilela F, Skabara PJ (2012) Donor-acceptor conjugated polymers based on p- and o-benzodifuranone and thiophene derivatives: electrochemical preparation and optical and electronic properties. Macromolecules 45(2):743–750

    Article  CAS  Google Scholar 

  33. Potratz S, Mishra A, Bauerle P (2012) Thiophene-based donor-acceptor co-oligomers by copper-catalyzed 1,3-dipolar cycloaddition. Beilstein J Org Chem 8:683–692

    Article  CAS  Google Scholar 

  34. Cheng XB, Liang M, Sun SY, Shi YB, Ma ZJ, Sun Z, Xue S (2012) Synthesis and photovoltaic properties of organic sensitizers containing electron-deficient and electron-rich fused thiophene for dye-sensitized solar cells. Tetrahedron 68(27-28):5375–5385

    Article  CAS  Google Scholar 

  35. Elschner A, Kirchmeyer S, Lövenich W, Udo M, Knud R (2010) PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press

  36. Cui CS, Xu LY, Zhao JS, He QP, Wang B (2012) Electrosynthesis and characterization of a new multielectrochromic copolymer of 1,4-bis(2-thienyl) benzene with 3,4-ethylenedioxythiophene. J Appl Polym Sci 125(5):3591–3601

    Article  CAS  Google Scholar 

  37. Wan XB, Zhang W, Jin S, Xue G, You QD, Che B (1999) The electrochemical copolymerization of pyrrole and furan in a novel binary solvent system. J Electroanal Chem 470(1):23–30

    Article  CAS  Google Scholar 

  38. Hu XL, Zuo LJ, Nan YX, Helgesen M, Hagemann O, Bundgaard E, Shi MM, Krebs FC, Chen HZ (2012) Fine tuning the HOMO energy levels of polythieno 3,4-b thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications. Synt Met 162(23):2005–2009

    Article  CAS  Google Scholar 

  39. Giglioti M, Trivinho-Strixino F, Matsushima JT, Bulhoes LOS, Pereira EC (2004) Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films. Sol Energ Mat Sol C 82(3):413–420

    Article  CAS  Google Scholar 

  40. Li GT, Kossmehl G, Welzel HP, Plieth W, Zhu HS (1998) Synthesis and electropolymerization of new p-nitrophenyl-functionalized thiophene derivatives. Macromol Chem Physic 199(12):2737–2746

    CAS  Google Scholar 

  41. Ren W, Emi A, Yamane M (2011) Molybdenum hexacarbonyl mediated alkoxycarbonylation of aryl halides. Synthesis-Stuttgart 14:2303–2309

    Google Scholar 

  42. Chueh CC, Higashihara T, Tsai JH, Ueda M, Chen WC (2009) All-conjugated diblock copolymer of poly(3-hexylthiophene)-block-poly(3-phenoxymethylthiophene) for field-effect transistor and photovoltaic applications. Org Electron 10(8):1541–1548

    Article  CAS  Google Scholar 

  43. Alhalasah W, Holze R (2005) Electrochemical materials science: tailoring intrinsically conducting polymers. The example: substituted thiophenes. J Solid State Electr 9(12):836–844

    Article  CAS  Google Scholar 

  44. Barbero C, Silber JJ, Sereno L (1990) Electrochemical properties of poly-ortho-aminophenol modified electrodes in aqueous acid-solutions. J Electroanal Chem 291(1-2):81–101

    Article  CAS  Google Scholar 

  45. Girotto EM, De Paoli MA (1999) Mass transport in intrinsically conducting polymers: importance, techniques and theoretical models. Quim Nov. 22(3):358–368

  46. Varela H, Malta M, Torresi RM (2000) Low cost in situ techniques in electrochemistry: the quartz crystal microbalance. Quim Nov. 23(5):664–679

  47. Alves MRD, Reis RNC, de Oliveira JG, Calado HDR, Donnici CL, Matencio T (2013) Simultaneous quartz microbalance and mirage effect studies of poly(3-methoxythiophene) electrosynthesis and electrochemical characterisations. Electrochim Acta 105:347–352

    Article  CAS  Google Scholar 

  48. Maranhao SLD, Torresi RM (1999) Quartz crystal microbalance study of charge compensation process in polyaniline films doped with surfactant anions. Electrochim Acta 44(12):1879–1885

    Article  CAS  Google Scholar 

  49. Sauerbrey G (1959) Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z Phys 155(2):206–222

    Article  CAS  Google Scholar 

  50. Patra S, Barai K, Munichandraiah N (2008) Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes. Synt Met 158(10):430–435

    Article  CAS  Google Scholar 

  51. Tamburri E, Orlanducci S, Toschi F, Terranova ML, Passeri D (2009) Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synt Met 159(5-6):406–414

    Article  CAS  Google Scholar 

  52. Castagnola V, Bayon C, Descamps E, Bergaud C (2014) Morphology and conductivity of PEDOT layers produced by different electrochemical routes. Synt Met 189:7–16

    Article  CAS  Google Scholar 

  53. Cysewska K, Karczewski J, Jasinski P (2015) Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film. Electrochim Acta 176:156–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq (457586/2014-1 and 473891/2012-3), CAPES, and FAPEMIG (CEX PPM 00916/15 TEC - APQ-02715-14, and Rede Mineira de Química-RED 00010/14, RQ-MG 2014-2016). We also would like to thank professor Claudinei R. Calado (CEFET-MG) for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Henrique de Araujo or Hállen Daniel Rezende Calado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araujo, M.H., Matencio, T., Donnici, C.L. et al. Synthesis and electrochemical investigation of beta-substituted thiophene-based donor–acceptor copolymers with 3,4-ethylenedioxythiophene (EDOT). J Solid State Electrochem 20, 2541–2550 (2016). https://doi.org/10.1007/s10008-016-3297-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3297-1

Keywords

Navigation