Skip to main content
Log in

Asymmetric tetraalkyl ammonium cation-based ionic liquid as an electrolyte for lithium-ion battery applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Performance of N-butyl N,N,N-triethylammonium bis(trifluoromethanesulfonyl)-imide (N2224TFSI) as a room temperature ionic liquid (RTIL) containing ethylene carbonate (EC)/diethylcarbonate (DEC) and lithium salt has been investigated as an electrolyte for lithium-ion battery. The electrolyte is highly resistant to fire during direct exposure to the flame, indicating its non-flammable nature. The overall electrochemical window of the ionic liquid (IL) electrolyte is up to 5.7 V vs. Li metal without any solvent decomposition, as confirmed by linear sweep voltammetry (LSV). The electrolyte has low viscosity (32.9 cPs) and high conductivity (5.23 mS cm−1) with effective SEI film-forming ability. The performance of the IL electrolyte has been tested with lithium-ion half cells using LiFePO4 and mesocarbon microbead (MCMB) electrodes, showing good galvanostatic cycling with high capacity retention of about 84 and 90 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  2. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  3. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  4. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  5. Wongittharom N, Lee TC, Hsu CH, Fey GTK, Huang KP, Chang JK (2013) Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: effects of Li salt at 25 °C and 50 °C. J Power Sources 240:676–682

    Article  CAS  Google Scholar 

  6. Galiński M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  7. Lewandowski A, Swiderska-mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609

    Article  CAS  Google Scholar 

  8. Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis (fluorosulfonyl) imide [FSI]−. J Power Sources 160:1308–1313

    Article  CAS  Google Scholar 

  9. Madria N, Arunkumar TA, Nair NG, Vadapalli A, Huang YW, Jones SC, Prakash Reddy V (2013) Ionic liquid electrolytes for lithium batteries : synthesis, electrochemical, and cytotoxicity studies. J Power Sources 234:277–284

    Article  CAS  Google Scholar 

  10. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  11. Kim K, Cho YH, Shin HC (2013) 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries. J Power Sources 225:113–118

    Article  CAS  Google Scholar 

  12. Stefan CS, Lemordant D, Claude-Montigny B, Violleau D (2009) Are ionic liquids based on pyrrolidinium imide able to wet separators and electrodes used for Li-ion batteries? J Power Sources 189:1174–1178

    Article  CAS  Google Scholar 

  13. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

  14. Lombardo L, Brutti S, Navarra MA, Panero S, Reale P (2013) Mixtures of ionic liquid-alkylcarbonates as electrolytes for safe lithium-ion batteries. J Power Sources 227:8–14

    Article  CAS  Google Scholar 

  15. Hofmann A, Schulz M, Hanemann T (2013) Effect of conducting salts in ionic liquid based electrolytes: viscosity, conductivity, and li-ion cell studies. Int J Electrochem Sci 8:10170–10189

    CAS  Google Scholar 

  16. Menne S, Kühnel RS, Balducci A (2013) The influence of the electrochemical and thermal stability of mixtures of ionic liquid and organic carbonate on the performance of high power lithium-ion batteries. Electrochim Acta 90:641–648

    Article  CAS  Google Scholar 

  17. Zheng H, Jiang K, Abe T, Ogumi Z (2006) Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 44:203–210

    Article  CAS  Google Scholar 

  18. Lee CP, Peng JD, Velayutham D, Chang J, Chen PW, Suryanarayanan V, Ho KC (2013) Trialkylsulfonium and tetraalkylammonium cations-based ionic liquid electrolytes for quasi-solid-state dye-sensitized solar cells. Electrochim Acta 114:303–308

    Article  CAS  Google Scholar 

  19. Xiao D, Hines LG, Li S, et al. (2009) Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1,3-dialkylimidazolium bis(trifluoromethanesulfonyl) amide ionic liquids. J Phys Chem B 113:6426–6433

    Article  CAS  Google Scholar 

  20. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K (2008) LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)- for Li-ion batteries. J Power Sources 175:866–873

    Article  CAS  Google Scholar 

  21. Lewandowski A, Acznik I, Swiderska-Mocek A (2010) LiFePO4 cathode in N-methyl-N-propylpiperidinium and N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide. J Appl Electrochem 40:1619–1624

    Article  CAS  Google Scholar 

  22. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38:183–197

    Article  CAS  Google Scholar 

  23. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201

    Article  CAS  Google Scholar 

  24. Zaghib K, Song X, Guerfi A, Rioux R, Kinoshita K (2003) Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal. J Power Sources 119-121:8–15

    Article  CAS  Google Scholar 

  25. Mabuchi A (1995) Charge-discharge mechanism of graphitized mesocarbon microbeads. J Electrochem Soc 142:3049

    Article  CAS  Google Scholar 

  26. Lu W, Goering A, Qu L, Dai L (2012) Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes. Phys Chem Chem Phys 14:12099–12104

  27. Ferrari S, Quartarone E, Mustarelli P, Magistris A, Protti S, Lazzaroni S, Fagnoni M, Albini A (2009) A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: a new promising electrolyte for lithium batteries. J Power Sources 194:45–50

    Article  CAS  Google Scholar 

  28. McOwen DW, Seo DM, Borodin O, Jenel B, Paul DB, Wesley AH (2014) Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ Sci 7:416–426

    Article  CAS  Google Scholar 

  29. Hess S, Wohlfahrt-Mehrens M, Wachtler M (2015) Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc 162:A3084–A3097

    Article  CAS  Google Scholar 

  30. Zheng H, Li B, Fu Y, Abe T, Ogumi Z (2006) Compatibility of quaternary ammonium-based ionic liquid electrolytes with electrodes in lithium ion batteries. Electrochim Acta 52:1556–1562

    Article  CAS  Google Scholar 

  31. Dong SY, Zhang PH, Tian AX, Huang TL (2012) Synthesis and characterization of quaternary ammonium-based ionic liquid. Adv Mater Res 433-440:178–182

    Article  CAS  Google Scholar 

  32. An Y, Zuo P, Cheng X, Liao L, Yin G (2011) The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochim Acta 56:4841–4848

    Article  CAS  Google Scholar 

  33. Raja M, Angulakshmi N, Thomas S, Prem Kumar T, Stephan AM (2014) Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. J Membr Sci 471:103–109

    Article  CAS  Google Scholar 

  34. Qin G, Xue S, Ma Q, Wang C (2014) The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries. CrystEngComm 16:260–269

    Article  CAS  Google Scholar 

  35. Liu X, Huang J-Q, Zhang Q, Liu XY, Peng HJ, Zhu W, Wei F (2012) N-Methyl-2-pyrrolidone-assisted solvothermal synthesis of nanosize orthorhombic lithium iron phosphate with improved Li-storage performance. J Mater Chem 22:18908

    Article  CAS  Google Scholar 

  36. Kim JS, Park YT (2000) Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery. J Power Sources 91:172–176

    Article  CAS  Google Scholar 

  37. Brutti S, Hassoun J, Scrosati B, Lin CY, Wu H, Hsieh HW (2012) A high power Sn–C/C–LiFePO4 lithium ion battery. J Power Sources 217:72–76

    Article  CAS  Google Scholar 

  38. Yang B, Li C, Zhou J, Liu J, Zhang Q (2014) Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries. Electrochim Acta 148:39–45

    Article  CAS  Google Scholar 

  39. Wang H, Liu S, Huang K, Yin X, Liu Y, Peng S (2012) BMIMBF4 ionic liquid mixtures electrolyte for Li-ion batteries. Int J Electrochem Sci 7:1688–1698

    CAS  Google Scholar 

  40. Damen L, Lazzari M, Mastragostino M (2011) Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles. J Power Sources 196:8692–8695

    Article  CAS  Google Scholar 

  41. Jin J, Li HH, Wei JP, Bian XK, Yan J (2009) Electrochemistry communications Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochem Commun 11:1500–1503

    Article  CAS  Google Scholar 

  42. Dong T, Zhang L, Chen S, Lu X, Zhang S (2015) A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO4 battery. Ionics 21:2109–2117

    Article  CAS  Google Scholar 

  43. Courtel FM, Niketic S, Duguay D, Lebdeh YA, Davidson IJ (2011) Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J Power Sources 196:2128–2134

    Article  CAS  Google Scholar 

  44. Lewandowski A, Świderska-Mocek A (2009) Properties of the lithium and graphite-lithium anodes in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide. J Power Sources 194:502–507

    Article  CAS  Google Scholar 

  45. Zheng H, Liu G, Battaglia V (2010) Film-forming properties of propylene carbonate in the presence of a quaternary ammonium ionic liquid on natural graphite anode. J Phys Chem C 114:6182–6189

    Article  CAS  Google Scholar 

  46. Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Khomenko V, Cantero I, Meatza ID, Holzapfel M, Tran N (2011) Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J Power Sources 196:9719–9730

    Article  CAS  Google Scholar 

  47. Gao K, Song XH, Shi Y, Li SD (2013) Electrochemical performances and interfacial properties of graphite electrodes with ionic liquid and alkyl-carbonate hybrid electrolytes. Electrochim Acta 114:736–744

    Article  CAS  Google Scholar 

  48. Lewandowski A, Swiderska-mocek A (2007) Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide as an electrolyte. J Power Sources 171:938–943

Download references

Acknowledgments

Financial support under the TAP-SUN project (NWP-56) of CSIR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Suryanarayanan or S. Gopukumar.

Electronic supplementary material

ESM 1

(DOCX 2.20 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvamani, V., Suryanarayanan, V., Velayutham, D. et al. Asymmetric tetraalkyl ammonium cation-based ionic liquid as an electrolyte for lithium-ion battery applications. J Solid State Electrochem 20, 2283–2293 (2016). https://doi.org/10.1007/s10008-016-3248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3248-x

Keywords

Navigation