Skip to main content
Log in

Pomegranate rind-derived activated carbon as electrode material for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, activated carbon materials were synthesized from pomegranate rind through carbonization and alkaline activation processes. The effects of pyrolytic temperature on the textual properties and electrochemical performance were investigated. The surface area of the activated carbon can reach at least 2200 m2 g−1 at different pyrolytic temperatures. It was found that, at the range of 600–900 °C, decreasing the carbonization temperature leads to the increase of t-plot micropore area, t-plot micropore volume, and capacitance. Further decreasing the carbonization temperature to 500 °C also leads to the increase of t-plot micropore area and t-plot micropore volume, but the capacitance is slightly poorer. The activated carbon carbonized at 600 °C and activated at 800 °C possesses very high specific area (2931 m2 g−1) and exhibits very high capacitance (∼268 F g−1 at 0.1 A g−1 and ∼242 F g−1 at 1 A g−1). There is no capacitance fading after 2000th cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A (2014) Nanoscale 6:12120–12129

    Article  CAS  Google Scholar 

  2. Biswas S, Drzal LT (2010) ACS Appl Mater Interfaces 2:2293–2300

    Article  CAS  Google Scholar 

  3. Tamailarasan P, Ramaprabhu S (2012) J Phys Chem C 116:14179–14187

    Article  CAS  Google Scholar 

  4. Zhang JT, Zhao XS (2012) J Phys Chem C 116:5420–5426

    Article  CAS  Google Scholar 

  5. Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, Ji J, Zhao X, Ruoff RS, Park S (2013) ACS Nano 7:19–26

    Article  CAS  Google Scholar 

  6. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) ACS Nano 7:6899–6905

    Article  CAS  Google Scholar 

  7. Xiong Z, Liao C, Wang X (2014) J Mater Chem A 2:19141–19144

    Article  CAS  Google Scholar 

  8. Kalugin ON, Chaban VV, Loskutov VV, Prezhdo OV (2008) Nano Lett 8:2126–2130

    Article  CAS  Google Scholar 

  9. Chen X, Wang HW, Yi H, Wang XF, Yan XR, Guo ZH (2014) J Phys Chem C 118:8262–8270

    Article  CAS  Google Scholar 

  10. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  11. Liu X, Zheng M, Xiao Y, Yang Y, Yang L, Liu Y, Lei B, Dong H, Zhang H, Fu H (2013) ACS Appl Mater Interfaces 5:4667–4677

    Article  CAS  Google Scholar 

  12. Liu X, Zhou L, Zhao Y, Bian L, Feng X, Pu Q (2013) ACS Appl Mater Interfaces 5:10280–10287

    Article  CAS  Google Scholar 

  13. Qian H, Kucernak AR, Greenhalgh ES, Bismarck A, Shaffer MS (2013) ACS Appl Mater Interfaces 5:6113–6122

    Article  CAS  Google Scholar 

  14. Sun H, He W, Zong C, Lu L (2013) ACS Appl Mater Interfaces 5:2261–2268

    Article  CAS  Google Scholar 

  15. Wang H, Chen Z, Liu HK, Guo Z (2014) RSC Adv 4:65074–65080

    Article  CAS  Google Scholar 

  16. Wang C, Wang Y (2013) ACS Nano 7:11156–11165

    Article  CAS  Google Scholar 

  17. Dai YH, Jiang H, Hu YJ, Fu Y, Li CZ (2014) Ind Eng Chem Res 53:3125–3130

    Article  CAS  Google Scholar 

  18. Kim C, Choi Y-O, Lee W-J, Yang K-S (2004) Electrochim Acta 50:883–887

    Article  CAS  Google Scholar 

  19. Lin J-H, Ko T-H, Lin Y-H, Pan C-K (2009) Energy Fuel 23:4668–4677

    Article  CAS  Google Scholar 

  20. Barranco V, Lillo-Rodenas MA, Linares-Solano A, Oya A, Pico F, Ibanez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) J Phys Chem C 114:10302–10307

    Article  CAS  Google Scholar 

  21. Feng S, Li W, Wang J, Song Y, Elzatahry AA, Xia Y, Zhao D (2014) Nanoscale 6:14657–14661

    Article  CAS  Google Scholar 

  22. Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Electrochem Commun 10:868–871

    Article  CAS  Google Scholar 

  23. Liu MC, Kong LB, Lu C, Li XM, Luo YC, Kang L (2012) RSC Adv 2:1890–1896

    Article  CAS  Google Scholar 

  24. Bhattacharjya D, Yu JS (2014) J Power Sources 262:224–231

    Article  CAS  Google Scholar 

  25. Wang Y, Zhang L, Wang H, Wang J, Yu W, Peng B, Yang Z, Chai L (2014) J Solid State Electrochem 18:3209–3214

    Article  CAS  Google Scholar 

  26. Zhang L, Wang Y, Peng B, Yu W, Wang H, Wang T, Deng B, Chai L, Zhang K, Wang J (2014) Green Chem 16:3926–3934

    Article  CAS  Google Scholar 

  27. Wang H, Li X, Chai L, Zhang L (2015) Chem Commun 51:8524–8527

    Article  CAS  Google Scholar 

  28. Wang S, Ren Z, Li J, Ren Y, Zhao L, Yu J (2014) RSC Adv 4:31300

    Article  CAS  Google Scholar 

  29. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) J Power Sources 195:912–918

    Article  CAS  Google Scholar 

  30. Ismanto AE, Wang S, Soetaredjo FE, Ismadji S (2010) Bioresour Technol 101:3534–3540

    Article  CAS  Google Scholar 

  31. He X, Ling P, Yu M, Wang X, Zhang X, Zheng M (2013) Electrochim Acta 105:635–641

    Article  CAS  Google Scholar 

  32. Biswal M, Banerjee A, Deo M, Ogale S (2013) Energy Environ Sci 6:1249–1259

    Article  CAS  Google Scholar 

  33. Raymundo-Piñero E, Cadek M, Béguin F (2009) Adv Funct Mater 19:1032–1039

    Article  Google Scholar 

  34. Groen JC, LAA P, Perez-Ramirez J (2003) Microporous Mesoporous Mater 60:1–17

    Article  CAS  Google Scholar 

  35. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Adv Mater 23:5641–5644

    Article  CAS  Google Scholar 

  36. Puthusseri D, Aravindan V, Anothumakkool B, Kurungot S, Madhavi S, Ogale S (2014) Small 10:4395–4402

    CAS  Google Scholar 

  37. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763

    Article  CAS  Google Scholar 

  38. Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) J Power Sources 190:587–591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from Excellent Youth Foundation (13JJ1003) of Hunan Provincial Science and Technology Department, National Natural Science Foundation of China (Grant no. 51404304), and Natural Science Foundation of Hunan Province (14JJ2001) and other supports which are from the Engineering Research Centre of Advanced Battery Materials, the Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Fang.

Electronic supplementary material

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Zhang, K., Li, J. et al. Pomegranate rind-derived activated carbon as electrode material for high-performance supercapacitors. J Solid State Electrochem 20, 469–477 (2016). https://doi.org/10.1007/s10008-015-3064-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3064-8

Keywords

Navigation