Skip to main content
Log in

Electrochemical template synthesis of adherent polyaniline thin films with tubular structure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis of nano and microstructured thin polyaniline (PANI) films by a simple and very efficient template-assisted method is presented. This work shows the synthesis and characterization of acoustically rigid thin films structured at nanotubular shape by using methyl orange (MO) as a template-assisted system. The amount of the tubes can be easily controlled by the charge passed. The morphology for different films growth was characterized by field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), and quartz crystal microbalance with dissipation mode (QCM-D). Raman spectroscopy results show important changes in the conformational PANI chain of the tubular material compare with a non-tubular one that provokes the increase of bipolarons population. This should be responsible by some changes in the electrochemical behavior of tubular film compared with the granular material, due to the higher conductivity when the emeraldine form starts to be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Terje A, Skotheim J, Reynolds R, (3th ed) (2007) Conjugated polymers theory synthesis properties and characterization. Handbook of conducting polymers. CRC Press Taylor & Francis Group, New York

  2. Otero TF, Martinez JG, Arias-Pardilla J (2012) Electrochim Acta 84:112–128

    Article  CAS  Google Scholar 

  3. Green RA, Lovell NH, Poole-Warren LA (2009) Biomaterials 30:3637–3644

    Article  CAS  Google Scholar 

  4. Georgea PM, Lyckmanb WA, LaVan DA, Hegde A, Leung Y, Avasare R, Testa C, Alexander PM, Langer R, Sur M (2005) Biomaterials 26:3511–3519

    Article  Google Scholar 

  5. Li Y, Neoh KG, Cen L, Kang ET (2005) J Biomed Mater Res part A 73:171–181

    Article  Google Scholar 

  6. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) J R S Interface 7:S559–S579

    Article  CAS  Google Scholar 

  7. Shahinpoor M (2003) Electrochim Acta 48:2343–2353

    Article  CAS  Google Scholar 

  8. Jager EWH, Smela E, Inganäs O (2000) Science 290:1540–1545

    Article  CAS  Google Scholar 

  9. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34:83–810

    Article  Google Scholar 

  10. Wenling W, Duo P, Yanfeng L, Guanghui Z, Lingyun J, Suli C (2015) Electrochim Acta 152:126–134

    Article  Google Scholar 

  11. Martin CR (1994) Science 266:1961–1966

    Article  CAS  Google Scholar 

  12. Xia L, Wei Z, Wan M (2010) J Colloid Interface Sci 341:1–11

    Article  CAS  Google Scholar 

  13. Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Int J Mol Sci 11:2636–2657

    Article  CAS  Google Scholar 

  14. Palys B, Celuch P (2006) Eletrochim Acta 51:4115–4124

    Article  CAS  Google Scholar 

  15. Peng C-Y, Kalkan AK, Fonash SJ, Gu B, Sen A (2005) Nanoletters 5:439–444

    Article  CAS  Google Scholar 

  16. Choi S-J, Park S-M (2000) Adv Mater 12:1547–1549

    Article  CAS  Google Scholar 

  17. Park S-M, Lee J-Y, Choi S-J (2001) Synth Met 121:1297–1298

    Article  CAS  Google Scholar 

  18. Zheng ZX, Xi YY, Dong P, Huang HG, Zhou JZ, Wu LL, Lin ZH (2002) Phys Chem Commun 5:63–65

    Google Scholar 

  19. Yang XM, Zhu ZX, Lu Y (2005) Macromol Rapid Commun 26:1736–1740

    Article  CAS  Google Scholar 

  20. Dai TY, Lu Y (2007) Macromol Rapid Commun 28:629–633

    Article  CAS  Google Scholar 

  21. Jackowska K, Biegunski AT, Tagowska M (2008) J Solid State Electrochem 12:437–443

    Article  CAS  Google Scholar 

  22. Dai TY, Yang XM, Lu Y (2006) Nanotechnology 17:3028–3034

    Article  CAS  Google Scholar 

  23. Antonio JLS, Lira LM, Gonçales VR, Cordoba de Torresi SI (2013) Electrochim Acta 101:216–224

    Article  CAS  Google Scholar 

  24. Sauerbrey G (1959) Z Phys A:Hadron Nucl 155:206–222

    Article  CAS  Google Scholar 

  25. Valenti LE, Martins VL, Herrera E, Torresi RM, Giacomelli CE (2013) J Mater Chem B 1:4921–4930

    Article  CAS  Google Scholar 

  26. Gabrielli C, Keddam M, Torresi RM (1991) J Electrochem Soc 138:2657–2660

    Article  CAS  Google Scholar 

  27. Lai L, Irene EA, Vac J (1999) Sci Technol B 17:33–39

    Article  CAS  Google Scholar 

  28. Furukawa Y, Hara T, Hyodo Y, Harada I (1986) Synth Met 16:189–198

    Article  CAS  Google Scholar 

  29. Furukawa Y, Ueda F, Hyodo Y, Harada I, Nakajima T, Kawagoe T (1988) Macromolecules 21:1297–1305

    Article  CAS  Google Scholar 

  30. Louarn G, Lapkowski M, Quillard S, Pron A, Buisson JP, Lefrant S (1996) J Phys Chem 100:6998–7006

    Article  CAS  Google Scholar 

  31. Boyer MI, Quillard S, Louarn G, Froyer G, Lefrant S (2000) J Phys Chem B 104:8952–8961

    Article  CAS  Google Scholar 

  32. Cochet M, Louarn G, Quillard S, Buisson JP, Lefrant S (2000) J Raman Spectrosc 31:1041–1049

    Article  CAS  Google Scholar 

  33. Silva CHB, Galiote NA, Huguenin F, Teixeira-Neto E, Constantino VRL, Temperini MLA (2012) J Mater Chem 22:14052–14060

    Article  CAS  Google Scholar 

  34. Silva CHB, Da Costa Ferreira AM, Constantino VRL, Temperini MLA (2014) J Mater Chem A 2:8205–8214

    Article  CAS  Google Scholar 

  35. MacDiarmid AG, Epstein AJ (1994) Synth Met 65:103–116

    Article  CAS  Google Scholar 

  36. MacDiarmid AG, Epstein AJ (1995) Synth Met 69:85–92

    Article  CAS  Google Scholar 

  37. Silva JEP, Temperini MLA, Cordoba de Torresi SI (1999) Electrochim Acta 44:1887–1891

    Article  Google Scholar 

  38. Silva JEP, Cordoba de Torresi SI, Temperini MLA (2000) J Braz Chem Soc 11:91–96

    Article  Google Scholar 

  39. Do Nascimento GM, Silva JEP, Cordoba de Torresi SI, Temperini MLA (2002) Macromolecules 35:121–125

    Article  CAS  Google Scholar 

  40. Do Nascimento GM, Silva CHB, Izumi CMS, Temperini MLA (2008) Spectrochim Acta A 71:869–875

    Article  Google Scholar 

  41. Do Nascimento GM, Silva CHB, Temperini MLA (2008) Polym Degrad Stab 93:291–297

    Article  CAS  Google Scholar 

  42. Ferreira DC, Pires JR, Temperini MLA (2011) J Phys Chem B 115:1368–1375

    Article  CAS  Google Scholar 

  43. Vorotynsev MA, Daikhin LI, Levi MD (1994) J Electroanal Chem 364:37–49

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Brazilian agencies FAPESP (Proc: n°2012/12023-2 and n°2009/53199-3) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana I. Córdoba de Torresi.

Additional information

Dedicated to our dear friend Jose Pepe Zagal for his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rego, L.S., Antonio, J.L.S., Silva, C.H.B. et al. Electrochemical template synthesis of adherent polyaniline thin films with tubular structure. J Solid State Electrochem 20, 983–991 (2016). https://doi.org/10.1007/s10008-015-2952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2952-2

Keywords

Navigation