Skip to main content

Advertisement

Log in

Synthesis of quasi-spherical micro-size lithium titanium oxide by an easy sol-gel method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A low-cost and facile method for synthesizing micro-size lithium titanium oxide, micro-size Li4Ti5O12 (MS-LTO), has been proposed in this study. The MS-LTO with a high tap density of 1.38 g cm−3 is prepared from synthesis-grade TiOSO4 through hydrolysis followed by calcination of obtained TiO2 with LiOH · H2O. The parameters of pH, temperature, concentration, etc. are optimized for preparing the precursor H2TiO3. The morphology, size, and structure of H2TiO3, TiO2, and MS-LTO are carefully characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical performances of the as-prepared MS-LTO deliver a reversible capacity of 171 mA · h g−1 at 0.1 C and show a good rate capability by maintaining 47 % of the capacity at 5 C (vs. 0.1 C), as well as remarkable cycling stability without capacity fading after 100 cycles at both 1 and 2 C. This as-prepared MS-LTO shows a potential application in lithium-ion batteries which can be utilized in the next-generation electric vehicles and hybrid electric vehicles. Furthermore, the strategy for synthesizing MS-LTO from production-level TiOSO4 · xH2SO4 · xH2O proposed here provides a facile method for preparing lithium-ion anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen LF, Zhang XG, Uchaker E, Yuan CZ, Cao GZ (2012) Adv Energy Mater 2:691–698

    Article  CAS  Google Scholar 

  2. Wang YG, Wang YR, Hosono E, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:7461–7465

  3. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262

  5. Dreyer W, Jamnik J, Guhlke C, Huth R, Moskon J, Gaberscek M (2010) Nat Mater 9:448–453

    Article  CAS  Google Scholar 

  6. Cheng L, Yan J, Zhu GN, Luo JY, Wang CX, Xia YY (2010) J Mater Chem 20:595–602

  7. Colbow KM, Dahn JR, Haering RR (1989) J Power Sources 26:397–402

  8. Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431–1435

  9. Scharner S, Weppner W, Schmid-Beurmann P (1999) J Electrochem Soc 146:857–861

    Article  CAS  Google Scholar 

  10. Ronci F, Reale P, Scrosati B, Panero S, Albertini VR, Perfetti P, di Michiel M, Merino JM (2002) J Phys Chem B 106:3082–3086

    Article  CAS  Google Scholar 

  11. Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K (2009) J Electrochem Soc 156:A128–A132

    Article  CAS  Google Scholar 

  12. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thackeray MM (2001) J Electrochem Soc 148:A102–A104

    Article  CAS  Google Scholar 

  13. Ouyang CY, Zhong ZY, Lei MS (2007) Electrochem Commun 9:1107–1112

    Article  CAS  Google Scholar 

  14. Kavan L, Procházka J, Spitler TM, Kalbáč M, Zukalová M, Drezen T, Grätzel M (2003) J Electrochem Soc 150:A1000–A1007

    Article  CAS  Google Scholar 

  15. Rho YH, Kanamura K (2004) J Solid State Chem 177:2094–2100

    Article  CAS  Google Scholar 

  16. Wagemaker M, van Eck ERH, Kentgens APM, Mulder FM (2009) J Phys Chem B 113:224–230

    Article  CAS  Google Scholar 

  17. Lee YG, Yi H, Kim WJ, Kang K, Yun DS, Strano MS, Ceder G, Belcher AM (2009) Science 324:1051–1055

    CAS  Google Scholar 

  18. Wang DH, Choi D, Li J, Yang ZG, Nie ZM, Kou R, Hu DH, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J (2009) ACS Nano 3:907–914

    Article  CAS  Google Scholar 

  19. Hu YS, Kienle L, Guo YG, Maier J (2006) Adv Mater 18:1421–1426

    Article  Google Scholar 

  20. Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) J Am Chem Soc 131:17786–17792

    Article  CAS  Google Scholar 

  21. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 97–98:503–507

    Article  Google Scholar 

  22. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  23. Cheng L, Li XL, Liu HJ, Xiong HM, Zhang PW, Xia YY (2007) J Electrochem Soc 154:A692–A697

    Article  CAS  Google Scholar 

  24. Wang YG, Liu HM, Wang KX, Hosono E, Wang YR, Zhou HS (2009) J Mater Chem 19:6789–6795

  25. Huang SH, Wen ZY, Zhu XJ, Gu ZH (2004) Electrochem Commun 6:1093–1097

    Article  CAS  Google Scholar 

  26. Jung HG, Myung ST, Yoon CS, Son SB, Oh KH, Amine K, Scrosati B, Sun YK (2011) Energy Environ Sci 4:1345–1351

  27. Zhu GN, Liu HJ, Zhuang JH, Wang CX, Wang YG, Xia YY (2011) Energy Environ Sci 4:4016–4022

  28. Amine K, Belharouak I, Chen ZH, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Adv Mater 22:3052–3057

    Article  CAS  Google Scholar 

  29. Tian CX, Zhang Z, Shen J, Luo N (2007) Rare Metal Mat Eng 36:631–636

    CAS  Google Scholar 

  30. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  31. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) J Power Sources 81–82:300–305

    Article  Google Scholar 

  32. Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  33. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) J Power Sources 81–82:902–905

    Article  Google Scholar 

  34. Li D, He P, Li HQ, Zhou HS (2012) Phys Chem Chem Phys 14:9086–9091

  35. Robertson AD, Trevino L, Tukamoto H, Irvine JTS (1999) J Power Sources 81–82:352–357

    Article  Google Scholar 

  36. Shen LF, Yuan CZ, Luo HJ, Zhang XG, Xu K, Zhang F (2011) J Mater Chem 21:761–767

    Article  CAS  Google Scholar 

  37. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) Angew Chem Int Ed 43:2286–2288

    Article  CAS  Google Scholar 

  38. Zhang SS (2006) J Power Sources 161:1385–1391

    Article  CAS  Google Scholar 

  39. Zhang QY, Zhang CL, Li B, Kang SF, Li X, Wang YG (2013) Electrochim Acta 98:146–152

    Article  CAS  Google Scholar 

  40. Zhu GN, Wang YG, Xia YY (2012) Energy Environ Sci 5:6652–6667

Download references

Acknowledgments

This research was partially supported financially by the Natural Science Foundation of Jiangsu Province of People’s Republic of China (BK2012309) and Specialized Research Fund for the Doctoral Program of Higher Education of People’s Republic of China (No.20120091120022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping He or Haoshen Zhou.

Additional information

Xiaofei Liu and Shengfu Tong contributed equally to this work.

Electronic supplementary material

The effects of the concentrations of reactants, hydrolysis time, and with or without stirring on the morphology and size of the product are discussed, and the corresponding SEM images of the H2TiO3 are available in the Supporting Information (SI). The XRD pattern of the precursor and thermogravimetric (TG) analysis curve, and BET results of TiO2 · H2O, TiO2, and MS-LTO are also provided.

ESM 1

(DOC 32544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tong, S., Dai, C. et al. Synthesis of quasi-spherical micro-size lithium titanium oxide by an easy sol-gel method. J Solid State Electrochem 19, 299–305 (2015). https://doi.org/10.1007/s10008-014-2577-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2577-x

Keywords

Navigation