Skip to main content
Log in

Lithium ion penetration depth profiles and reversibility of electrochromic reaction for TiO2 thin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We investigated the penetration depth profiles of lithium ions in titanium oxide thin film during electrochromic reactions. The penetration depth profiles were obtained using time-of-flight secondary ion mass spectrometry (TOF-SIMS) for various states associated with coloring and bleaching reactions.

It was found that the amount of penetrated lithium ions in the coloring process decreased sharply with increasing depth for samples in which lithium ions were inserted by applying a voltage, Vi, for 50 s in electrolyte. Over 70 % of the total lithium ions were detected within 10 nm from the surface of the film. The amount of ions in each depth was represented as a function of 1/d 2 (d, depth), and the penetration depth of the lithium ions increased by increasing Vi. Furthermore, we found that the de-intercalation of the lithium ions by applying a reverse voltage arise preferentially near the surface of the film. The de-intercalated (released) lithium ion ratio seems to decrease with increasing the penetration depth.

Hence, we expected that an electrochromic device using nanorod-structured titanium oxide film would improve reproducibility owing to a small number of unreleased ions. A film composed of nanorods was made by oblique evaporation. The electrochromic device using the nanorod-structured film showed excellent reproducibility for small value of driving voltage. The number of possible switching increased by a factor of 30 according to the driving voltage.

In this paper, we discuss the details of the relationship between the lithium ion penetration depth profile and the electrochromic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang J, Tu J, Xia X, Qiao Y, Lu Y (2009) Sol Energy Mater Sol Cells 93:1840–1845

    Article  CAS  Google Scholar 

  2. Yamazaki J, Kuranaga T, Takaba H, Saito N, Inoue Y, Takai O (2006) J Surf Finish Soc Jpn 57:459–460

    Article  CAS  Google Scholar 

  3. Passerini S, Scarminio J, Scrosati B, Zane D, Decker F (1993) J Appl Electrochem 23:1187–1195

    Article  CAS  Google Scholar 

  4. Michalak F, Rottkay K, Richardson T, Sslack J, Rubin M (1999) Electrochim Acta 44:3085–3092

    Article  CAS  Google Scholar 

  5. Kang S, Lim J, Kim H, Kim J, Chung Y, Sung Y (2009) Chem Mater 21:2777–2788

    Article  CAS  Google Scholar 

  6. Kitao M, Oshima Y, Urabe K (1997) Jpn J Appl Phys 36:4423–4426

    Article  CAS  Google Scholar 

  7. Lee K (2008) J Korean Phys Soc 52:1070–1076

    Article  CAS  Google Scholar 

  8. Wang C, Lin S, Chen Y (2008) J Phys Chem Solids 69:451–455

    CAS  Google Scholar 

  9. Yoshimura K, Miki T, Tanemura S (1997) J Vac Sci Technol A 15:2673–2676

    Article  CAS  Google Scholar 

  10. Yonghong Y, Jiayu Z, Peifu G, Xu L, Jinfa T (1997) Thin Solid Films 298:197–199

    Article  Google Scholar 

  11. Ozer N (1992) Thin Solid Films 214:17–24

    Article  CAS  Google Scholar 

  12. Tomoyoshi M, Taga Y (1989) Appl Opt 28:2466–2482

    Article  Google Scholar 

  13. Mbise G, Bellac D, Niklasson G, Granqvist C (1997) J Phys D:Appl Phys 30:2103–2122

    Article  CAS  Google Scholar 

  14. Colgan MJ, Djurfors B, Ivey DG, Brett MJ (2004) Thin. Solid Films 466:92–96

    Article  CAS  Google Scholar 

  15. Flaherty DW, Dohnalek Z, Dohnalkova A, Arey BW, McCready DE, Ponnusamy N, Mullins CB, Kay BD (2007) J Phys Chem C 111:4765–4773

    Article  CAS  Google Scholar 

  16. Flaherty DW, Hahn NT, May RA, Berglund SP, Lin Y-M, Stevenson KJ, Dohnalek Z, Kay BD, Mullins CB (2012) Acc. Chem Res 45:434–443

    Article  CAS  Google Scholar 

  17. Berger S, Ghicov A, Nah Y, Schmuki P (2009) Langmuir 25:4841–4844

    Article  CAS  Google Scholar 

  18. Lee S, Deshpande R, Parilla P, Jones K, To B, Mahan A, Dillon A (2006) Adv Mater 18:763–766

    Article  CAS  Google Scholar 

  19. Ghicov A, Albu S, Macak J, Schmuki P (2008) Small 4:1063–1066

    Article  CAS  Google Scholar 

  20. Sodergren S, Siegbahn H, Rensmo H, Lindstrom H, Hagfeldt A, Lindquist S (1997) J Phys Chem B 101:3087–3090

    Google Scholar 

  21. Krings L, Tamminga Y, Berkum J, Labohm F, Veen A, Arnoldbik W (1999) J Vac Sci Technol A 17:198–205

    Article  CAS  Google Scholar 

  22. Decker F, Donsanti F, Salvi A, Ibris N, Castle J, Martin F, Alamarguy D, Vuk A, Orel B, Lourenco A (2008) J Braz Chem Soc 19:667–671

    Article  CAS  Google Scholar 

  23. Monk P, Mortimer R, Rosseinsky D (2007) Electrochromism and electrochromic devices, Chapter 3 and Chapter 5

Download references

Acknowledgments

We are grateful to our colleagues from Canon Inc.: Amita Goyal and Alexis Debray for reading the manuscript and making useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miki Ueda or Shinjiro Okada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 55.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, M., Tsukamoto, M., Sakai, A. et al. Lithium ion penetration depth profiles and reversibility of electrochromic reaction for TiO2 thin films. J Solid State Electrochem 18, 2637–2645 (2014). https://doi.org/10.1007/s10008-014-2520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2520-1

Keywords

Navigation