Skip to main content
Log in

Performance analysis of un-doped and doped titania (TiO\(_2\)) as an electron transport layer (ETL) for perovskite solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Density functional theory (DFT) calculations are carried out on pure and doped rutile TiO\(_2\). The bandgap (E\(_g\)) for pristine, S-doped, Fe-doped, and Fe/S co-doped materials is direct, with values of 2.98 eV, 2.18 eV, 1.58 eV, and 1.40 eV. The effective mass of charge carriers (m*) and ratio of effective masses of holes to effective masses of electrons (R) are also investigated, and it is discovered that Fe/S co-doped materials have the lowest charge carrier recombination rate. The Fe/S co-doped material has the highest \(\varepsilon (\omega )\). \(\alpha (\omega )\) of doped materials shifted into the visible range. Due to the high dopant concentration in Fe and Fe/S-doped cases, the E\(_g\) is lowered to a relatively small value; hence, only pristine and S-doped materials are verified as electron transport layer (ETL). A solar cell device analysis employing pure and S-doped rutile TiO\(_2\) as ETL is completed using DFT-derived parameters in SCAPS-1D modeling software for the first time. For the optimized solar cells, current–voltage (IV) characteristics, quantum efficiency (QE), capacitance-voltage (CV) characteristics, and capacitance-frequency (Cf) characteristics are provided. The aim of the present study is to improve efficiency of perovskite solar cell by doping as well as to improve accuracy of simulation by applying DFT extracted parameters as input. From the analysis, improvement is found in efficiency of doped TiO\(_2\) compared to un-doped TiO\(_2\). The efficiency of the PSC with S-doped ETL is 1.418% higher than the PSC with un-doped ETL.

Method

Quantumwise Automistic Tool Kit (ATK) is used to extract DFT parameters. Using these DFT parameters as input in SCAPS-1D (Solar Cell Capacitance Simulator), solar cells for doped and un-doped material are simulated. The density functional theory (DFT)-based orthogonalized linear combination of atomic orbital (OLCAO) technique is used. Structural optimization is done using the LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno). PBESol-GGA (Perdew-Burke-Ernzerhof solid-generalized gradient approximation) is applied as exchange correlation for calculating structural parameters, while MGGA-TB09 (meta-generalized gradient approximation-Tran and Blaha) is applied as exchange correlation for calculating optical and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Kanatzidis MG, Hao F (2015) Lead-free solid-state organic-inorganic halide perovskite photovoltaic cells. Google Patents. US Patent App. 14/686,539

  2. Kim H-S, Im SH, Park N-G (2014) Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C 118(11):5615–5625

    CAS  Google Scholar 

  3. Lyu M, Yun J-H, Chen P, Hao M, Wang L (2017) Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Advanced Energy Materials 7(15):1602512

    Google Scholar 

  4. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344

    CAS  PubMed  Google Scholar 

  5. Su Y, Kravets V, Wong S, Waters J, Geim AK, Nair RR (2014) Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature communications 5(1):1–5

    Google Scholar 

  6. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB et al (2014) Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 7(9):3061–3068

    CAS  Google Scholar 

  7. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    CAS  PubMed  Google Scholar 

  8. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647

    CAS  PubMed  Google Scholar 

  9. Liu D, Li Q, Hu J, Jing H, Wu K (2019) Predicted photovoltaic performance of lead-based hybrid perovskites under the influence of a mixed-cation approach: theoretical insights. Journal of Materials Chemistry C 7(2):371–379

    CAS  Google Scholar 

  10. Caputo M, Cefarin N, Radivo A, Demitri N, Gigli L, Plaisier JR, Panighel M, Di Santo G, Moretti S, Giglia A et al (2019) Electronic structure of MAPbi3 and MAPbcl3: importance of band alignment. Scientific reports 9(1):1–11

    CAS  Google Scholar 

  11. De Los Santos IM, Cortina-Marrero HJ, Ruíz-Sánchez M, Hechavarría-Difur L, Sánchez-Rodríguez F, Courel M, Hu H (2020) Optimization of CH3NH3PbI3 perovskite solar cells: a theoretical and experimental study. Solar Energy 199:198–205

    Google Scholar 

  12. Lazemi M, Asgharizadeh S, Bellucci S (2018) A computational approach to interface engineering of lead-free CH 3 NH 3 SnI 3 highly-efficient perovskite solar cells. Physical Chemistry Chemical Physics 20(40):25683–25692

    CAS  PubMed  Google Scholar 

  13. Ma L, Hao F, Stoumpos CC, Phelan BT, Wasielewski MR, Kanatzidis MG (2016) Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. Journal of the American Chemical Society 138(44):14750–14755

    CAS  PubMed  Google Scholar 

  14. Lin L, Jiang L, Li P, Fan B, Qiu Y (2019) A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost lowtemperature processing. Journal of Physics and Chemistry of Solids 124:205–211

    CAS  Google Scholar 

  15. Hao F, Stoumpos CC, Cao DH, Chang RP, Kanatzidis MG (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature photonics 8(6):489–494

    CAS  Google Scholar 

  16. Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. Rsc Advances 7(28):17044–17062

    CAS  Google Scholar 

  17. Ren H, Sun J, Yu R, Yang M, Gu L, Liu P, Zhao H, Kisailus D, Wang D (2016) Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 7:793–798. https://doi.org/10.1039/C5SC03203B

    Article  CAS  PubMed  Google Scholar 

  18. Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G et al (2015) Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews 44(19):6749–6773

    CAS  PubMed  Google Scholar 

  19. Markose KK, Shaji M, Bhatia S, Nair PR, Saji KJ, Antony A, Jayaraj MK (2020) Novel boron doped p-type Cu2O thin film as hole selective contact in c-Si solar cell. ACS applied materials & interfaces

  20. Pitchaiya S, Natarajan M, Santhanam A, Asokan V, Yuvapragasam A, Ramakrishnan VM, Palanisamy SE, Sundaram S, Velauthapillai D (2020) A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry 13(1):2526–2557

    CAS  Google Scholar 

  21. Mishra AK, Mukherjee B, Kumar A, Jarwal DK, Ratan S, Kumar C, Jit S (2019) Superficial fabrication of gold nanoparticles modified CuO nanowires electrode for non-enzymatic glucose detection. RSC advances 9(4):1772–1781

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Casas G, Cappelletti MÁ, Cedola AP, Soucase BM, Blancá EP (2017) Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations. Superlattices and Microstructures 107:136–143

  23. Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili MN, Li Y, Wu K et al (2016) Ultrathin Cu 2 O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8(11):6173–6179

    CAS  PubMed  Google Scholar 

  24. Khattak YH, Baig F, Ullah S, Marí B, Beg S, Khan K (2018) Effect of Cu2O hole transport layer and improved minority carrier life time on the efficiency enhancement of Cu2NISnS4 based experimental solar cell. Journal of Renewable and Sustainable Energy 10(4):043502

    Google Scholar 

  25. Wang Y, Xia Z, Liang J, Wang X, Liu Y, Liu C, Zhang S, Zhou H (2015) Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semiconductor Science and Technology 30(5):054004

    Google Scholar 

  26. Le Corre VM, Stolterfoht M, Perdigon Toro L, Feuerstein M, Wolff C, Gil-Escrig L, Bolink HJ, Neher D, Koster LJA (2019) Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness. ACS Appl Energy Mater 2(9):6280–6287

    Google Scholar 

  27. Cho A-N, Park N-G (2017) Impact of interfacial layers in perovskite solar cells. ChemSusChem 10(19):3687–3704

    CAS  PubMed  Google Scholar 

  28. Azri F, Meftah A, Sengouga N, Meftah A (2019) Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar energy 181:372–378

    CAS  Google Scholar 

  29. Hima A, Lakhdar N, Benhaoua B, Saadoune A, Kemerchou I, Rogti F (2019) An optimized perovskite solar cell designs for high conversion efficiency. Superlattices and Microstructures 129:240–246

    CAS  Google Scholar 

  30. Laali J, Hamedani A, Alahyarizadeh G, Minuchehr A (2020) Performance analysis of the perovskite solar cells by a realistic, DFT-accurate optical absorption spectrum. Superlattices and Microstructures 143:106551

    CAS  Google Scholar 

  31. Haidari G (2019) Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Advances 9(8):085028

    Google Scholar 

  32. Tan K, Lin P, Wang G, Liu Y, Xu Z, Lin Y (2016) Controllable design of solidstate perovskite solar cells by SCAPS device simulation. Solid-State Electronics 126:75–80

    CAS  Google Scholar 

  33. Chakraborty K, Choudhury MG, Paul S (2019) Numerical study of Cs2TiX6 (X= Br-, I-, F- AND Cl-) based perovskite solar cell using scaps-1d device simulation. Solar Energy 194:886–892

    CAS  Google Scholar 

  34. Le Bahers T, Rerat M, Sautet P (2014) Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. The Journal of Physical Chemistry C 118(12):5997–6008

    CAS  Google Scholar 

  35. Giorgi G, Fujisawa J-I, Segawa H, Yamashita K (2014) Cation role in structural and electronic properties of 3D organic-inorganic halide perovskites: a DFT analysis. The Journal of Physical Chemistry C 118(23):12176–12183

    CAS  Google Scholar 

  36. Akbari A, Hashemi J, Mosconi E, De Angelis F, Hakala M (2017) First principles modelling of perovskite solar cells based on TiO 2 and al 2 O 3: stability and interfacial electronic structure. Journal of Materials Chemistry A 5(5):2339–2345

    CAS  Google Scholar 

  37. Rahman NM, Adnaan M, Adhikary D, Islam M, Alam MK (2018) Firstprinciples calculation of the optoelectronic properties of doped methylammonium lead halide perovskites: a DFT-based study. Computational Materials Science 150:439–447

    CAS  Google Scholar 

  38. Yin W-J, Shi T, Yan Y (2014) Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters 104(6):063903

    Google Scholar 

  39. Kumar M, Raj A, Kumar A, Anshul A (2021) Theoretical evidence of high power conversion efficiency in double perovskite solar cell device. Optical Materials 111:110565

    CAS  Google Scholar 

  40. Nishat SS, Hossain MJ, Mullick FE, Kabir A, Chowdhury S, Islam S, Hossain M (2021) Performance analysis of perovskite solar cells using DFT-extracted parameters of metal-doped TiO2 electron transport layer. The Journal of Physical Chemistry C 125(24):13158–13166

    CAS  Google Scholar 

  41. Srivastava A, Tripathy SK, Lenka TR, Hvizdos P, Menon PS, Lin F, Aberle AG (2022) Device simulation of Ag2SrSnS4 and Ag2SrSnSe4 based thin-film solar cells from scratch. Advanced Theory and Simulations 5(2):2100208

    CAS  Google Scholar 

  42. Wang H, Qiang Y, Zheng S, Wei P, Xie Y (2022) Enhanced efficiency and stability of carbon-based perovskite solar cells by Eva interface engineering. Advanced Materials Interfaces. https://doi.org/10.1002/admi.202102069

    Article  Google Scholar 

  43. Noh MFM, Teh CH, Daik R, Lim EL, Yap CC, Ibrahim MA, Ludin NA, Mohd Yusoff AR, Jang J, Teridi MAM (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C 6(4):682–712

    Google Scholar 

  44. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133

    Google Scholar 

  45. Mulyanti B,Wulandari C, Hasanah L, Pawinanto RE, Hamidah I (2022) Absorption performance of doped TiO2-based perovskite solar cell using FDTD simulation. Modelling and Simulation in Engineering 2022

  46. Dharmale N, Chaudhury S, Pandey CK (2022) Theoretical investigation on undoped and doped TiO2 for solar cell application. Physica Scripta

  47. Abd Mutalib M, Ahmad Ludin N, Su’ait MS, Davies M, Sepeai S, Mat Teridi MA, Mohamad Noh MF, Ibrahim MA (2022) Performance-enhancing sulfur-doped TiO2 photoanodes for perovskite solar cells. Appl Sci 12(1) https://doi.org/10.3390/app12010429

  48. Arunmetha S, Dhineshbabu N, Kumar A, Jayavel R (2021) Preparation of sulfur doped TiO2 nanoparticles from rutile sand and their performance testing in hybrid solar cells. Journal of Materials Science: Materials in Electronics 32(24):28382–28393

    CAS  Google Scholar 

  49. Liu X, Liu Z, Sun B, Tan X, Ye H, Tu Y, Shi T, Tang Z, Liao G (2018) All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer. Electrochimica Acta 283:1115–1124

    CAS  Google Scholar 

  50. Jameel MH, Rehman A, Roslan MS, Agam MAB (2023) To investigate the structural, electronic, optical and magnetic properties of Sr-doped KNbO3 for perovskite solar cell applications: a DFT study. Physica Scripta 98(5):055802. https://doi.org/10.1088/1402-4896/acc6fb

    Article  Google Scholar 

  51. Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG et al (2019) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. Journal of Physics: Condensed Matter 32(1):015901

    PubMed  Google Scholar 

  52. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Densityfunctional method for nonequilibrium electron transport. Physical Review B 65(16):165401

    Google Scholar 

  53. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter 14(11):2745

    CAS  Google Scholar 

  54. Fletcher R (1970) A new approach to variable metric algorithms. The computer journal 13(3):317–322

    Google Scholar 

  55. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Mathematics of computation 24(109):23–26

    Google Scholar 

  56. Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Mathematics of computation 24(111):647–656

  57. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical review letters 100(13):136406

    PubMed  Google Scholar 

  58. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms: 2. the new algorithm. IMA J Appl Math 6(3):222–231

  59. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Physical review letters 102(22):226401

    PubMed  Google Scholar 

  60. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Physical review B 13(12):5188

    Google Scholar 

  61. Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Physical Review B 58(7):3641

    CAS  Google Scholar 

  62. Schlipf M, Gygi F (2015) Optimization algorithm for the generation of ONCV pseudopotentials. Computer Physics Communications 196:36–44

    CAS  Google Scholar 

  63. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M, Cab C, De Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605

    CAS  PubMed  Google Scholar 

  64. Yan Y, Wei S-H (2008) Doping asymmetry in wide-bandgap semiconductors: origins and solutions. physica status solidi (b) 245(4), 641–652

  65. Gai Y, Li J, Li S-S, Xia J-B, Wei S-H (2009) Design of narrow-gap TiO 2: a passivated codoping approach for enhanced photoelectrochemical activity. Physical review letters 102(3):036402

    PubMed  Google Scholar 

  66. Zhao Z, Liu Q (2008) Designed highly effective photocatalyst of anatase TiO2 codoped with nitrogen and vanadium under visible-light irradiation using first-principles. Catalysis letters 124(1):111–117

    CAS  Google Scholar 

  67. Yin W-J, Tang H, Wei S-H, Al-Jassim MM, Turner J, Yan Y (2010) Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2. Physical Review B 82(4):045106

    Google Scholar 

  68. Dharmale N, Chaudhury S, Mahamune R, Dash D (2020) Comparative study on structural, electronic, optical and mechanical properties of normal and high pressure phases titanium dioxide using dft. Materials Research Express 7(5):054004

    CAS  Google Scholar 

  69. Dharmale N, Chaudhury S, Dash D (2020) Investigating the naturally occurring forms of TiO2 on electronic and optical properties using OLCAO-MGGA-TBO9: a hybrid DFT study. Modelling and Simulation in Materials Science and Engineering 29(2):025001

    Google Scholar 

  70. Jameel MH, Bin Agam MA, bin Roslan MS, Jabbar AH, Malik RQ, Islam MU, Raza A, Subhani RA (2023) A comparative DFT study of electronic and optical properties of Pb/Cd-doped LaVO4 and Pb/Cd-LuVO4 for electronic device applications. Computational Condensed Matter 34:00773. https://doi.org/10.1016/j.cocom.2022.e00773

    Article  Google Scholar 

  71. Jameel MH, Ahmed S, Jiang Z-Y, Tahir MB, Akhtar MH, Saleem S, Jabbar AH, Roslan MS (2022) First principal calculations to investigate structural, electronic, optical, and magnetic properties of Fe3O4and Cd-doped Fe2O4. Computational Condensed Matter 30:00629. https://doi.org/10.1016/j.cocom.2021.e00629

    Article  Google Scholar 

  72. Jameel MH, Xu T, Jiang Z-Y, Agam MAB, Roslan MS, Farhina A, Hamzah MQ, Rafique F (2021) First principal calculations of electronic, optical and magnetic properties of cubic K1xYxNbO3(Y = Fe, Ni). Physica Scripta 96(12):125839. https://doi.org/10.1088/1402-4896/ac198d

    Article  Google Scholar 

  73. Wang T, Zhu Y, Jiang Q (2013) Bandgap opening of bilayer graphene by dual doping from organic molecule and substrate. The Journal of Physical Chemistry C 117(24):12873–12881

    CAS  Google Scholar 

  74. Zhao Y, Tu J, Sun Y, Hu X, Ning J, Wang W, Wang F, Xu Y, He L (2018) Enhanced photocatalytic activity of 2H-MoSe2 by 3d transition-metal doping. The Journal of Physical Chemistry C 122(46):26570–26575

    CAS  Google Scholar 

  75. Zhu Z, Zhou F, Zhan S, Huang N, He Q (2018) Enhancement of g-C3N4 cathode for inactivation of marine microorganisms in ZnWO4 photocatalytic system. Applied Surface Science 456:156–163

    CAS  Google Scholar 

  76. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics 16(38):20382–20386

    CAS  PubMed  Google Scholar 

  77. Cardona M, Harbeke G (1965) Optical properties and band structure of wurtzitetype crystals and rutile. Phys. Rev. 137:1467–1476. https://doi.org/10.1103/PhysRev.137.A1467

    Article  CAS  Google Scholar 

  78. Delin A, Ravindran P, Eriksson O, Wills J (1998) Full-potential optical calculations of lead chalcogenides. International Journal of Quantum Chemistry 69(3):349–358

    CAS  Google Scholar 

  79. Gan Y, Bi X, Liu Y, Qin B, Li Q, Jiang Q, Mo P (2020) Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 13(22):5907

    CAS  Google Scholar 

  80. Karthick S, Velumani S, Bouclé J (2020) Experimental and scaps simulated formamidinium perovskite solar cells: a comparison of device performance. Solar Energy 205:349–357

    CAS  Google Scholar 

  81. Sarkar P, Tripathy S, Baishnab K (2021) Polyvinylpyrrolidone capped electrospun CH3NH3PbCL3 perovskite film as the electron transport layer in perovskite solar cell application. Solar Energy 230:390–400

    CAS  Google Scholar 

  82. Lee J-W, Lee T-Y, Yoo PJ, Grätzel M, Mhaisalkar S, Park N-G (2014) Rutile TiO 2-based perovskite solar cells. Journal of Materials Chemistry A 2(24):9251–9259

    CAS  Google Scholar 

  83. Odari V, Musembi R, Mwabora J (2019) Device simulation of Sb2S3 solar cells by SCAPS-1D software. Africa Journal of Physical Sciences ISSN 2313–3317:3

    Google Scholar 

  84. Rahman MS, Miah S, Marma MSW, Sabrina T (2019) Simulation based investigation of inverted planar perovskite solar cell with all metal oxide inorganic transport layers. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6. IEEE

  85. Subbiah J, Mitchell VD, Hui NK, Jones DJ, Wong WW (2017) A green route to conjugated polyelectrolyte interlayers for high-performance solar cells. Angewandte Chemie International Edition 56(29):8431–8434

    CAS  PubMed  Google Scholar 

  86. Tavakoli MM, Yadav P, Tavakoli R, Kong J (2018) Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv Energy Mater 8(23): 1800794

  87. Singh T, Öz S, Sasinska A, Frohnhoven R, Mathur S, Miyasaka T (2018) Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers. Advanced Functional Materials 28(14):1706287

    Google Scholar 

  88. Du H-J, Wang W-C, Zhu J-Z (2016) Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chinese Physics B 25(10):108802

    Google Scholar 

  89. Lee YM, Maeng I, Park J, Song M, Yun J-H, Jung M-C, Nakamura M (2018) Comprehensive understanding and controlling the defect structures: an effective approach for organic-inorganic hybrid perovskite-based solar-cell application. Frontiers in Energy Research 6:128

    Google Scholar 

  90. Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RP, Kanatzidis MG (2015) Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society 137(35):11445–11452

    CAS  PubMed  Google Scholar 

  91. Patel PK (2021) Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Scientific Reports 11(1):1–11

    CAS  Google Scholar 

  92. Shalan AE, Narra S, Oshikiri T, Ueno K, Shi X, Wu H-P, Elshanawany MM, Diau EW-G, Misawa H (2017) Optimization of a compact layer of TiO 2 via atomic-layer deposition for high-performance perovskite solar cells. Sustainable Energy & Fuels 1(7):1533–1540

    CAS  Google Scholar 

  93. Rahman MA (2021) Design and simulation of a high-performance cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D. SN Applied Sciences 3(2):1–15

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Electrical Engineering, NIT Silchar, for their valuable support in this research work.

Author information

Authors and Affiliations

Authors

Contributions

A. Neerja Dharmale: developed the theory, performed the computations, and wrote the manuscript with support from B and C

B. Aadhityan A: verified the material computations of the work using Quantum ATK, checked the whole manuscript for technical errors, and supervised the findings of this work.

C. Ashutosh Srivastava: verified the device computations of the work using Scaps-1D, checked the whole manuscript for technical errors, and supervised the findings of this work.

D. Saurabh Chaudhury: supervised the findings of this work and corrected all technical and grammatical errors in writing.

Corresponding authors

Correspondence to Neerja Dharmale or Aadhityan A.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with Neerja Dharmale, Aadhityan A and Saurabh Chaudhury; author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmale, N., A, A., Srivastava, A. et al. Performance analysis of un-doped and doped titania (TiO\(_2\)) as an electron transport layer (ETL) for perovskite solar cells. J Mol Model 30, 154 (2024). https://doi.org/10.1007/s00894-024-05943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05943-y

Keywords

Navigation