Skip to main content
Log in

Probing the inhibition of MAO-B by chalcones: an integrated approach combining molecular docking, ADME analysis, MD simulation, and MM-PBSA calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B.

Methods

Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand–protein interactions’ dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones’ potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Chopade P, Chopade N, Zhao Z et al (2023) Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med 8:1–23. https://doi.org/10.1002/btm2.10367

    Article  CAS  Google Scholar 

  2. Chen SQ, Wang ZS, Ma YX et al (2018) Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Mol 23:512. https://doi.org/10.3390/MOLECULES23030512

    Article  Google Scholar 

  3. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905. https://doi.org/10.1007/S00702-017-1686-Y/METRICS

    Article  PubMed  Google Scholar 

  4. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Reports 67:195–203. https://doi.org/10.1016/J.PHAREP.2014.09.004

    Article  CAS  Google Scholar 

  5. Anwal L (2021) A comprehensive review on Alzheimer’s disease. World J Pharm Pharm Sci 10:1170. https://doi.org/10.20959/wjpps20217-19427

    Article  CAS  Google Scholar 

  6. Carlsson A (2002) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109:777–787. https://doi.org/10.1007/S007020200064/METRICS

    Article  CAS  PubMed  Google Scholar 

  7. Dezsi L, Vecsei L (2017) Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol Disord - Drug Targets 16:425–439. https://doi.org/10.2174/1871527316666170124165222

    Article  CAS  PubMed  Google Scholar 

  8. Gökhan-Kelekçi N, Yabanoǧlu S, Küpeli E et al (2007) A new therapeutic approach in Alzheimer disease: some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorganic Med Chem 15:5775–5786. https://doi.org/10.1016/j.bmc.2007.06.004

    Article  CAS  Google Scholar 

  9. Carradori S, D’Ascenzio M, Chimenti P et al (2014) Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 18:219–243. https://doi.org/10.1007/s11030-013-9490-6

    Article  CAS  PubMed  Google Scholar 

  10. Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology 25:11–20. https://doi.org/10.1016/S0161-813X(03)00085-8

    Article  CAS  PubMed  Google Scholar 

  11. Carradori S, Silvestri R (2015) New frontiers in selective human MAO-B inhibitors. J Med Chem 58:6717–6732. https://doi.org/10.1021/jm501690r

    Article  CAS  PubMed  Google Scholar 

  12. Carradori S, Petzer JP (2015) Novel monoamine oxidase inhibitors: a patent review (2012–2014). Expert Opin Ther Pat 25:91–110. https://doi.org/10.1517/13543776.2014.982535

    Article  CAS  PubMed  Google Scholar 

  13. Chaurasiya ND, Zhao J, Pandey P et al (2019) Selective inhibition of human monoamine oxidase B by acacetin 7-methyl ether isolated from Turnera diffusa (Damiana). Molecules 24:1–15. https://doi.org/10.3390/molecules24040810

    Article  CAS  Google Scholar 

  14. Chimenti F, Bolasco A, Secci D et al (2010) Investigations on the 2-thiazolylhydrazyne scaffold: synthesis and molecular modeling of selective human monoamine oxidase inhibitors. Bioorganic Med Chem 18:5715–5723. https://doi.org/10.1016/j.bmc.2010.06.007

    Article  CAS  Google Scholar 

  15. Delogu GL, Kumar A, Gatto G et al (2021) Synthesis and in vitro study of nitro- and methoxy-2-phenylbenzofurans as human monoamine oxidase inhibitors. Bioorg Chem 107:1–11. https://doi.org/10.1016/j.bioorg.2020.104616

    Article  CAS  Google Scholar 

  16. Koyiparambath VP, Prayaga Rajappan K, Rangarajan TM et al (2021) Deciphering the detailed structure–activity relationship of coumarins as monoamine oxidase enzyme inhibitors—an updated review. Chem Biol Drug Des 98:655–673. https://doi.org/10.1111/CBDD.13919

    Article  CAS  PubMed  Google Scholar 

  17. Ipe RS, Kumar S, Benny F et al (2023) A concise review of the recent structural explorations of chromones as MAO-B inhibitors: update from 2017 to 2023. Pharm 16:1310. https://doi.org/10.3390/PH16091310

    Article  CAS  Google Scholar 

  18. Kumar B, Sheetal MAK, Kumar V (2016) Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Adv 6:42660–42683. https://doi.org/10.1039/C6RA00302H

    Article  CAS  Google Scholar 

  19. Hagenow J, Hagenow S, Grau K et al (2020) Reversible small molecule inhibitors of MAO A and MAO B with anilide motifs. Drug Des Devel Ther 14:371–393. https://doi.org/10.2147/DDDT.S236586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mathew B, Parambi DGT, Sivasankarapillai VS et al (2019) Perspective design of chalcones for the management of CNS disorders: a mini-review. CNS Neurol Disord Drug Targets 18:432–445. https://doi.org/10.2174/1871527318666190610111246

    Article  CAS  PubMed  Google Scholar 

  21. Diana EJ, Kanchana US, Mathew TV, Anilkumar G (2020) Recent developments in the metal catalysed cross-coupling reactions for the synthesis of the enone system of chalcones. Appl Organomet Chem 34:1–17. https://doi.org/10.1002/aoc.5987

    Article  CAS  Google Scholar 

  22. Zhuang C, Zhang W, Sheng C et al (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810. https://doi.org/10.1021/ACS.CHEMREV.7B00020/ASSET/IMAGES/MEDIUM/CR-2017-00020T_0066.GIF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akman F (2021) A comparative study based on molecular structure, spectroscopic, electronic, thermodynamic and NBO analysis of some nitrogen-containing monomers. Polym Bull 78:663–693. https://doi.org/10.1007/S00289-020-03128-0/METRICS

    Article  CAS  Google Scholar 

  24. Chimenti F, Fioravanti R, Bolasco A et al (2009) Chalcones: a valid scaffold for monoamine oxidases inhibitors. J Med Chem 52:2818–2824. https://doi.org/10.1021/JM801590U/SUPPL_FILE/JM801590U_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  25. Hammuda A, Shalaby R, Rovida S et al (2016) Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors. Eur J Med Chem 114:162–169. https://doi.org/10.1016/J.EJMECH.2016.02.038

    Article  CAS  PubMed  Google Scholar 

  26. Lakshminarayanan B, Baek SC, Lee JP et al (2019) Ethoxylated head of chalcones as a new class of multi-targeted MAO inhibitors. ChemistrySelect 4:6614–6619. https://doi.org/10.1002/SLCT.201901093

    Article  CAS  Google Scholar 

  27. Guglielmi P, Mathew B, Secci D, Carradori S (2020) Chalcones: unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur J Med Chem 205:112650. https://doi.org/10.1016/j.ejmech.2020.112650

    Article  CAS  PubMed  Google Scholar 

  28. Mathew B, Haridas A, Uçar G et al (2016) Exploration of chlorinated thienyl chalcones: a new class of monoamine oxidase-B inhibitors. Int J Biol Macromol 91:680–695. https://doi.org/10.1016/J.IJBIOMAC.2016.05.110

    Article  CAS  PubMed  Google Scholar 

  29. Mathew B, Haridas A, Uçar G et al (2016) Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: a new class of reversible MAO-B inhibitors. ChemMedChem 11:1161–1171. https://doi.org/10.1002/CMDC.201600122

    Article  CAS  PubMed  Google Scholar 

  30. Sasidharan R, Manju SL, Uçar G et al (2016) Identification of indole-based chalcones: discovery of a potent, selective, and reversible class of MAO-B inhibitors. Arch Pharm (Weinheim) 349:627–637. https://doi.org/10.1002/ARDP.201600088

    Article  CAS  PubMed  Google Scholar 

  31. Mathew B, Mathew GE, Ucar G et al (2017) Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int J Biol Macromol 104:1321–1329. https://doi.org/10.1016/J.IJBIOMAC.2017.05.162

    Article  CAS  PubMed  Google Scholar 

  32. Sasidharan R, Baek SC, Sreedharannair Leelabaiamma M et al (2018) Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors. Biomed Pharmacother 106:8–13. https://doi.org/10.1016/J.BIOPHA.2018.06.064

    Article  CAS  PubMed  Google Scholar 

  33. Mathew B, Baek SC, Thomas Parambi DG et al (2019) Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 352:1800309. https://doi.org/10.1002/ARDP.201800309

    Article  Google Scholar 

  34. Oh JM, Rangarajan TM, Chaudhary R et al (2020) Novel class of chalcone oxime ethers as potent monoamine oxidase-B and acetylcholinesterase inhibitors. Mol 25:2356. https://doi.org/10.3390/MOLECULES25102356

    Article  CAS  Google Scholar 

  35. Maliyakkal N, Baysal I, Tengli A et al (2021) Trimethoxy crown chalcones as multifunctional class of monoamine oxidase enzyme inhibitors. Comb Chem High Throughput Screen 25:1314–1326. https://doi.org/10.2174/1386207324666210603125452

    Article  CAS  Google Scholar 

  36. Engelbrecht I, Petzer JP, Petzer A (2018) Nitrocatechol derivatives of chalcone as inhibitors of monoamine oxidase and catechol-O-methyltransferase. Cent Nerv Syst Agents Med Chem 18:115–127. https://doi.org/10.2174/1871524918666180426125714

    Article  CAS  PubMed  Google Scholar 

  37. Shalaby R, Petzer JP, Petzer A et al (2019) SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs. J Enzyme Inhib Med Chem 34:863–876. https://doi.org/10.1080/14756366.2019.1593158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mellado M, Salas CO, Uriarte E et al (2019) Design, synthesis and docking calculations of prenylated chalcones as selective monoamine oxidase B inhibitors with antioxidant activity. ChemistrySelect 4:7698–7703. https://doi.org/10.1002/SLCT.201901282

    Article  CAS  Google Scholar 

  39. Kong Z, Sun D, Jiang Y, Hu Y (2020) Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B. J Enzyme Inhib Med Chem 35:1513–1523. https://doi.org/10.1080/14756366.2020.1797711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moya-Alvarado G, Yañez O, Morales N et al (2021) Coumarin-chalcone hybrids as inhibitors of MAO-B: biological activity and in silico studies. Mol 26:2430. https://doi.org/10.3390/MOLECULES26092430

    Article  CAS  Google Scholar 

  41. El-Damasy AK, Park JE, Kim HJ et al (2023) Identification of new N-methyl-piperazine chalcones as dual MAO-B/AChE inhibitors. Pharmaceuticals 16:83. https://doi.org/10.3390/PH16010083/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma P, Sharma K, Nandave M (2023) Computational approaches in drug discovery and design. Springer Nature Singapore Pvt. Ltd

    Book  Google Scholar 

  43. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Binda C, Li M, Hubálek F et al (2003) Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 100:9750–9755. https://doi.org/10.1073/pnas.1633804100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. J Chem Phys 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  46. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  47. Bauernschmitt R, Häser M, Treutler O, Ahlrichs R (1997) Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem Phys Lett 264:573–578. https://doi.org/10.1016/S0009-2614(96)01343-7

    Article  CAS  Google Scholar 

  48. Trott O, Olson AJ (2012) Software news and updates Gabedit — a graphical user interface for computational chemistry softwares. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  49. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  50. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  51. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1007/978-94-011-6950-9_3

    Article  CAS  Google Scholar 

  52. Dodda LS, De Vaca IC, Tirado-Rives J, Jorgensen WL (2017) LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res 45:1–6. https://doi.org/10.1093/nar/gkx312

    Article  CAS  Google Scholar 

  53. Toukan K, Rahman A (1985) Molecular-dynamics study of atomic motions in water. Phys Rev B 31:2643–2648. https://doi.org/10.1103/PhysRevB.31.2643

    Article  CAS  Google Scholar 

  54. Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  55. Di Pierro M, Elber R, Leimkuhler B (2015) A stochastic algorithm for the isobaric-isothermal ensemble with Ewald summations for all long range forces. J Chem Theory Comput 11:5624–5637. https://doi.org/10.1021/acs.jctc.5b00648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  57. Wang E, Sun H, Wang J et al (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119:9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055

    Article  CAS  PubMed  Google Scholar 

  58. Zoete V, Irving MB, Michielin O (2010) MM-GBSA binding free energy decomposition and T cell receptor engineering. J Mol Recognit 23:142–152. https://doi.org/10.1002/jmr.1005

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Xu W, Chu S et al (2019) Computational design and study of artificial selenoenzyme with controllable activity based on an allosteric protein scaffold. Chem - A Eur J 25:10350–10358. https://doi.org/10.1002/chem.201901480

    Article  CAS  Google Scholar 

  60. Kumari R, Kumar R, Lynn A (2014) G-mmpbsa -a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  61. Hursthouse MB, Hughes DS, Gelbrich T, Threlfall TL (2015) Describing hydrogen-bonded structures; topology graphs, nodal symbols and connectivity tables, exemplified by five polymorphs of each of sulfathiazole and sulfapyridine. Chem Cent J 9:1–15. https://doi.org/10.1186/s13065-014-0076-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Researchers Supporting Project Number (RSP2024R379), King Saud University, Riyadh, Saudi Arabia, for supporting this study.

Funding

The research was funded through the Researchers Supporting Project Number (RSP2024R379), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

TVM and JKV planned the manuscript. JJ wrote the manuscript. JJ, JKV, and TVM prepared the figures, and TVM checked the manuscript and provided overall feedback. MKP was responsible for conceptualisation and project administration. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Thomas V. Mathew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, J., Varughese, J.K., Parvez, M.K. et al. Probing the inhibition of MAO-B by chalcones: an integrated approach combining molecular docking, ADME analysis, MD simulation, and MM-PBSA calculations. J Mol Model 30, 103 (2024). https://doi.org/10.1007/s00894-024-05889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05889-1

Keywords

Navigation