Skip to main content
Log in

Theoretical study of cistrans isomer of 2-hydroxy-5-methyl-2ʹ-nitroazobenzene: DFT insight

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The synthesis of azobenzene materials is an important aspect of the research in the field of photo-switch materials. It is currently thought that azobenzene molecules exist in the cis and trans form of molecular structure configuration. However, the reaction process allowing for reversible energy switches from trans to cis form is still challenging. Therefore, it is crucial to understand the molecular properties of the azobenzene compounds in order to provide reference for future synthesis and application. Affirmation supporting this perspective has been substantially derived from theoretical results in the isomerization process and whether these molecular structures may affect the electronic properties entirely needs to be confirmed. In this study, I give my effort to understand the molecular structure properties of the cis and trans form of azobenzene molecule from 2-hydroxy-5-methyl-2ʹ-nitroazobenzene (HMNA). Their chemistry phenomena are investigated using the density functional theory (DFT) method. This study shows that the trans-HMNA has a molecular size of 9.0 Å and the cis-HMNA has a molecular size of 6.6 Å. The trans-HMNA exhibits an electronic transition of π → π* type driven by an azo bond, whereas the cis-HMNA exhibits an electronic transition of n → π* type with respect to the non-bonding electrons of oxygen and nitrogen atoms. Therefore, the HMNA mechanism pathway from trans to cis form is feasible to undergo at the inversion pathway in the ground state.

Methods

All DFT calculations were performed using the Gaussian Software Packages (Gaussian 09 Revision-A.02 and GaussView 5.0.8). Gaussum 3.0 software was selected to visualize the molecular orbital levels in the density of states diagram. The optimized molecular geometrical parameter was calculated using B3LYP/cc-pVTZ level in the gas phase. TD-DFT with M06-2X/cc-pVTZ level was used as a method for the precise interpretation of excited states in molecular systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Bandara HD, Burdette SC (2012) Chem. Soc. Rev. 41:1809–1825

    Article  CAS  PubMed  Google Scholar 

  2. Cabré G, Garrido-Charles A, Moreno M, Bosch M, Porta-de-la-Riva M, Krieg M, Gascón-Moya M, Camarero N, Gelabert R, Lluch JM (2019) Nat. Commun. 10:907

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhu M, Zhou H (2018) Org. Biomol. Chem. 16:8434–8445

    Article  CAS  PubMed  Google Scholar 

  4. Duchstein P, Neiss C, Görling A, Zahn D (2012) J. Mol. Model. 18:2479–2482

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Zou S, Sun X (2018) RSC Adv. 8:6212–6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bouchouit M, Elkouari Y, Messaadia L, Bouraiou A, Arroudj S, Bouacida S, Taboukhat S, Bouchouit K (2016) Opt. Quant. Electron. 48:178

    Article  Google Scholar 

  7. Chanana G, Batra K (2021) J. Mol. Model. 27:1–19

    Article  Google Scholar 

  8. Fabian J, Hartmann J (2013) Light absorption of organic colorants: theoretical treatment and empirical rules, Vol 12. Springer Science & Business Media

    Google Scholar 

  9. Chuan-Guang Q, Cai-Xia L, Ouyang G-W, Ke Q, Zhang F, Hai-Tong S, Xiao-Hui W (2015) Chin. J. Anal. Chem. 43:433–443

    Article  Google Scholar 

  10. Fei L, Ge F, Yin Y, Wang C (2019) Colloids Surf, A 560:366–375

    Article  CAS  Google Scholar 

  11. Hisham S, Sarih NM, Tajuddin HA, Abidin ZHZ, Abdullah Z (2021) RSC Adv. 11:15428–15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oliveira O, Raposo M, Dhanabalan A (2001) Langmuir-blodgett and self-assembled polymeric films. Handbook of surfaces and interfaces of materials, Vol 4. Academic Press, London, pp 1–63

    Google Scholar 

  13. Fischer E (1960) J. Am. Chem. Soc. 82:3249–3252

    Article  CAS  Google Scholar 

  14. Gámez JA, Koslowski A, Thiel W (2014) RSC Adv. 4:1886–1889

    Article  Google Scholar 

  15. Dudek M, Tarnowicz-Staniak N, Deiana M, Pokładek Z, Samoć M, Matczyszyn K (2020) RSC Adv. 10:40489–40507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X-M, Jin X-Y, Zhang Z-X, Wang J, Bai F-Q (2018) RSC Adv. 8:11580–11588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye L, Xu C, Gu FL, Zhu C (2020) J. Comput. Chem. 41:635–645

    Article  CAS  PubMed  Google Scholar 

  18. Yue L, Yu L, Xu C, Lei Y, Liu Y, Zhu C (2017) Chem. Phys. Chem. 18:1274–1287

    Article  CAS  PubMed  Google Scholar 

  19. Aleotti F, Nenov A, Salvigni L, Bonfanti M, El-Tahawy MM, Giunchi A, Gentile M, Spallacci C, Ventimiglia A, Cirillo G (2020) J. Phys. Chem. A 124:9513–9523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Georgiev A, Kostadinov A, Ivanov D, Dimov D, Stoyanov S, Nedelchev L, Nazarova D, Yancheva D (2018) Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 192:263–274

    Article  CAS  Google Scholar 

  21. Wang X, Vapaavuori J, Bazuin CG, Pellerin C (2018) Macromolecules 51:1077–1087

    Article  CAS  Google Scholar 

  22. Constantin C-P, Sava I, Damaceanu M-D (2021) Macromolecules 54:1517–1538

    Article  CAS  Google Scholar 

  23. Knippenberg S, Osella S (2020) J. Phys. Chem. C 124:8310–8322

    Article  CAS  Google Scholar 

  24. Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC (2009) Gaussian 09 (Revision A.02). Gaussian Inc. Wallingford

  25. Frisch ME, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09 (Revision A. 02). Gaussian Inc. Wallingford

  26. O’boyle NM, Tenderholt AL, Langner KM (2008) J. Comput. Chem. 29:839–845

    Article  PubMed  Google Scholar 

  27. Karton A, Spackman PR (2021) J. Comput. Chem. 42:1590–1601

    Article  CAS  PubMed  Google Scholar 

  28. Hassan HB (2014) Int. J. Curr. Eng. Sci. Res. 4:2342–2345

    Google Scholar 

  29. Sirianni DA, Alenaizan A, Cheney DL, Sherrill CD (2018) J. Chem. Theory. Comput. 14:3004–3013

    Article  CAS  PubMed  Google Scholar 

  30. Yuan X-A, Yu M-N, Zhu Q, Zhang W-W, Xie L-H, Huang W, Ma J (2018) J. Mater. Chem. C 6:1551–1561

    Article  CAS  Google Scholar 

  31. Giroday T, Montero-Campillo MM, Mora-Diez N (2014) Comput. Theor. Chem. 1046:81–92

    Article  CAS  Google Scholar 

  32. Walker M, Harvey AJ, Sen A, Dessent CE (2013) J. Phys. Chem. A 117:12590–12600

    Article  CAS  PubMed  Google Scholar 

  33. Sharma D, Paterson MJ (2014) Photochem. Photobiol. Sci. 13:1549–1560

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Fan W, Yuan X-A, Yu S (2019) Nat Commun 10:4743

    Article  PubMed  PubMed Central  Google Scholar 

  35. Magyar R, Tretiak S (2007) J. Chem. Theory. Comput. 3:976–987

    Article  CAS  PubMed  Google Scholar 

  36. Martin RL (2003) J. Chem. Phys. 118:4775–4777

    Article  CAS  Google Scholar 

  37. Toy M, Tanak H (2016) Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc. 152:530–536

    Article  CAS  Google Scholar 

  38. Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) Phys. Chem. Chem. Phys. 14:5383–5388

    Article  CAS  PubMed  Google Scholar 

  39. Cojocaru C, Airinei A, Fifere N (2013) Springerplus 2:1–19

    Article  Google Scholar 

  40. Murray JS, Sen K (1996) Molecular electrostatic potentials: concepts and applications. Elsevier

    Google Scholar 

  41. Rusydi F, Madinah R, Puspitasari I, Mark-Lee WF, Ahmad A, Rusydi A (2021) Biochem. Mol. Biol. Educ. 49:216–227

    Article  CAS  PubMed  Google Scholar 

  42. Vetráková Ľ, Ladányi V, Al Anshori J, Dvořák P, Wirz J, Heger D (2017) Photochem. Photobiol. Sci. 16:1749–1756

    Article  Google Scholar 

  43. Sun S, Liang S, Xu W-C, Xu G, Wu S (2019) Polym Chem 10:4389–4401

    Article  CAS  Google Scholar 

  44. Mulliken R (1955) J Chem Phys 23:1841–1846

    Article  CAS  Google Scholar 

  45. Boese AD, Martin JM (2004) J Chem Phys 121:3405–3416

    Article  CAS  PubMed  Google Scholar 

  46. Foster AJ, Weinhold F (1980) J. Am. Chem. Soc. 102(7211):7218

    Google Scholar 

  47. Masamura M (2000) Struct Chem 11:41–45

    Article  CAS  Google Scholar 

  48. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  49. Hirshfeld FL (1977) Theoret Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  50. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  51. Carpenter J, Weinhold F (1988) J Mol Struct (Thoechem) 169:41–62

    Article  Google Scholar 

  52. Liu J-N, Chen Z-R, Yuan S-F (2005) J Zhejiang Univ Sci B 6:584

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tanak H, Toy M (2014) J Mol Struct 1068:189–197

    Article  CAS  Google Scholar 

  54. Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F (2021) J Chem Res 45:147–158

    Article  CAS  Google Scholar 

  55. Ruiz-Morales Y (2002) J Phys Chem A 106:11283–11308

    Article  CAS  Google Scholar 

  56. Pearson RG (1989) J Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  57. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  58. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  59. Parr RG, Szentpály LV, Liu S (1999) J. Am. Chem. Soc. 121:1922–1924

    Article  CAS  Google Scholar 

  60. Chattaraj PK, Giri S (2007) J Phys Chem A 111:11116–11121

    Article  CAS  PubMed  Google Scholar 

  61. Wei-GuangDiau E (2004) J. Phys. Chem. A 108:950–956

    Article  Google Scholar 

  62. Crecca CR, Roitberg AE (2006) J Phys Chem A 110:8188–8203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Fu-Yung Huang at Chemistry Department of National Cheng Kung University for his theoretical calculation facility and constructive suggestions during the planning and development of this study.

Author information

Authors and Affiliations

Authors

Contributions

F.N. designed the study, conducted the theoretical study, analyzed data, and wrote the paper. The author approved the final version of the manuscript and agrees to be held accountable for the content therein.

Corresponding author

Correspondence to Fernando Nainggolan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 950 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nainggolan, F. Theoretical study of cistrans isomer of 2-hydroxy-5-methyl-2ʹ-nitroazobenzene: DFT insight. J Mol Model 29, 177 (2023). https://doi.org/10.1007/s00894-023-05583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05583-8

Keywords

Navigation