Skip to main content
Log in

Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5−

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A computational investigation of the aerobic oxidative C–C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo6O24]5− in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identified. The catalytic cycle of each pathway consists of three steps: oxidation cleavage of a glycol molecule by the HPA, oxidation of the HPA by one dioxygen molecule, and, finally, oxidation of a second glycol and regeneration of the catalyst. These reaction pathways have been thoroughly investigated in terms of energetic, natural bond orbital (NBO), natural charges, and geometrical parameters. It is found that (i) even though the top oxygen atoms of the Anderson heteropolyanion are not the most negatively charged ones, they are more likely to react with the diol hydroxyl groups, (ii) a direct relationship between the presence of the iodine ion I(VII) and the studied oxidation reaction could not be identified, and (iii) in terms of energy, the transfer of the two hydrogen atoms is the most energetic step.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Anastas P, Bartlett L, Kirchhoff M, Williamson T (2000) The role of catalysis in the design, development, and implementation of green chemistry. Catal Today 55:11–22. https://doi.org/10.1016/S0920-5861(99)00222-9

    Article  CAS  Google Scholar 

  2. Rodríguez-Padrón D, Puente-Santiago A, Balu A, Muñoz-Batista M, Luque R (2018) ChemCatChem 11:18–38. https://doi.org/10.1002/cctc.201801248

    Article  CAS  Google Scholar 

  3. Delidovich I, Palkovits R (2016) Green Chem 18:590–593. https://doi.org/10.1039/C5GC90070K

    Article  CAS  Google Scholar 

  4. Trost BM, Fleming I (eds) (1991) Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry (vol. 8). Elsevier

  5. Zakzeski J, Bruijnincx P, Jongerius A, Weckhuysen B (2010) The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  Google Scholar 

  6. Perlin, A.: Advances in Carbohydrate Chemistry and Biochemistry Volume 60. 183–250 (2006). https://doi.org/10.1016/S0065-2318(06)60005-X

  7. Malaprade L (1928) Bull Soc Chim Fr 43:683

    CAS  Google Scholar 

  8. Sudalai A, Khenkin A, Neumann R (2015) Org Biomol Chem 13:4374–4394. https://doi.org/10.1039/C5OB00238A

    Article  CAS  Google Scholar 

  9. Criegee R (1931) Ber 64:260–266

    Google Scholar 

  10. Baer E, Grosheintz J, Fischer H (1939) Oxidation of 1,2-Glycols or 1,2,3-Polyalcohols by Means of Lead Tetraacetate in Aqueous Solution. J Am Chem Soc 61:2607–2609. https://doi.org/10.1021/ja01265a010

    Article  CAS  Google Scholar 

  11. Zhou Z, Liu M, Lv L, Li C (2018) Anastas. Angew Chem 57:2616–2620. https://doi.org/10.1002/anie.201711531

    Article  CAS  Google Scholar 

  12. Escande V, Lam C, Coish P, Anastas P (2017) Anastas. Angew Chem 56:9561–9565

    Article  CAS  Google Scholar 

  13. Kim S, Kim D, Yang J (2014) Org Lett 16:2876–2879. https://doi.org/10.1039/D2QO00221C

    Article  CAS  Google Scholar 

  14. El Aakel, L., Launay, F., Atlamsani, A.: Brégeault, Efficient and selective catalytic oxidative cleavage of α-hydroxy ketones using vanadium-based HPA and dioxygen. J. Chem. Commun. 2218 (2001). https://doi.org/10.1039/B106969A

  15. Amadio E, González-Fabra J, Carraro D, Denis W, Gjoka B, Zonta C, Bartik K, Cavani F, Solmi S, Bo C et al (2018) Efficient Vanadium-Catalyzed Aerobic C−C Bond Oxidative Cleavage of Vicinal Diols. Adv Synth Catal 360:3286–3296. https://doi.org/10.1002/adsc.201800050

    Article  CAS  Google Scholar 

  16. Shimizu M, Orita H, Suzuki K, Hayakawa T, Hamakawa S, Takehira K (1996) J Mol Catal A: Chem 114:217–220. https://doi.org/10.1016/S1381-1169(96)00320-2

    Article  CAS  Google Scholar 

  17. Yu H, Wang J, Wu Z, Zhao Q, Dan D, Han S, Tang J, Wei Y (2019) Green Chem 21:4550–4554. https://doi.org/10.1039/C9GC02053E

    Article  CAS  Google Scholar 

  18. Heravi M, VazinFard M, Faghihi Z (2013) Heteropoly acids-catalyzed organic reactions in water: doubly green reactions. Green Chem Lett Rev 6:282–300. https://doi.org/10.1080/17518253.2013.846415

    Article  CAS  Google Scholar 

  19. Sun L, Su T, Li P, Xu J, Chen N, Liao W, Deng C, Ren W, Lü H (2019) Extraction Coupled with Aerobic Oxidative Desulfurization of Model Diesel Using a B-type Anderson Polyoxometalate Catalyst in Ionic Liquids. Catal Lett 149:1888–1893. https://doi.org/10.1007/s10562-019-02791-x

    Article  CAS  Google Scholar 

  20. Wei Z, Wang J, Yu H, Han S, Wei Y (2022) Extraction Coupled with Aerobic Oxidative Desulfurization of Model Diesel Using a B-type Anderson Polyoxometalate Catalyst in Ionic Liquids. Molecules 27:5212. https://doi.org/10.3390/molecules27165212

    Article  CAS  Google Scholar 

  21. Yu W, Zhang Y, Han Y, Li B, Shao S, Zhang L, Xie H, Yan J (2021) Microwave-Assisted Synthesis of Tris-Anderson Polyoxometalates for Facile CO 2 Cycloaddition. Inorg Chem 60:3980–3987. https://doi.org/10.1021/acs.inorgchem.1c00019

    Article  CAS  Google Scholar 

  22. Guermi, I.N.E.H., Saal, A.: Struct. Chem. 1–10 (2022). https://doi.org/10.1007/s11224-022-02088-7

  23. Wei Z, Ru S, Zhao Q, Yu H, Zhang G, Wei Y (2019) Highly efficient and practical aerobic oxidation of alcohols by inorganic-ligand supported copper catalysis. Green Chem 21:4069–4075. https://doi.org/10.1039/C9GC01248F

    Article  CAS  Google Scholar 

  24. Zhou Z, Dai G, Ru S, Yu H, Wei Y (2019) Highly selective and efficient olefin epoxidation with pure inorganic-ligand supported iron catalysts. Dalton Trans. 48:14201–14205. https://doi.org/10.1039/C9DT02997D

    Article  CAS  Google Scholar 

  25. Yu, H., Wu, Z., Wei, Z., Zhai, Y., Ru, S., Zhao, Q., Wang, J., Han, S., Wei, Y.: Commun. Chem. (2019). https://doi.org/10.1038/s42004-019-0109-4

  26. Wu Z, Zhai Y, Zhao W, Wei Z, Yu H, Han S, Wei Y (2020) An efficient way for the N formylation of amines by inorganic-ligand supported iron catalysis. Green Chem 22:737–741. https://doi.org/10.1039/C9GC03564H

    Article  CAS  Google Scholar 

  27. Jin, P., Wei, H., Zhou, L., Wei, D., Wen, Y., Zhao, B., Wang, X., Li, B.: Mol. Catal. 510, 111705 (2021). https://doi.org/10.1016/j.mcat.2021.111705

  28. Khenkin A, Neumann R (2002) Aerobic Oxidation of Vicinal Diols Catalyzed by an Anderson-Type Polyoxometalate, [IMo6O24]5. Adv Synth Catal 344:1017–1021. https://doi.org/10.1002/1615-4169(200210)344:9%3c1017::AID-ADSC1017%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  29. Yu H, Zhai Y, Dai G, Ru S, Han S, Wei Y (2017) Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines. Eur J chem 23:13883–13887. https://doi.org/10.1002/chem.201703185

    Article  CAS  Google Scholar 

  30. Zhang M, Zhai Y, Ru S, Zang D, Han S, Yu H, Wei Y (2018) Highly practical and efficient preparation of aldehydes and ketones from aerobic oxidation of alcohols with an inorganic-ligand supported iodine catalyst. Chem Comm 54:10164–10167. https://doi.org/10.1039/C8CC03722A

    Article  CAS  Google Scholar 

  31. Mills N (2006) ChemDraw Ultra 10.0 CambridgeSoft. 100 CambridgePark Drive, Cambridge, MA 02140. https://www.cambridgesoft.com

  32. Davydov R, Strushkevich N, Smil D, Yantsevich A, Gilep A, Usanov S, Hoffman BM (2015) Evidence That Compound I Is the Active Species in Both the Hydroxylase and Lyase Steps by Which P450scc Converts Cholesterol to Pregnenolone: EPR/ENDOR/Cryoreduction/Annealing Studies. Biochem 54:7089–7097. https://doi.org/10.1021/acs.biochem.5b00903

    Article  CAS  Google Scholar 

  33. Huang QQ, Yu WQ, Luo XL, Gao J, Xu J, Asian J (2018) Org Chem 7:2039–2044. https://doi.org/10.1002/ajoc.201800505

    Article  CAS  Google Scholar 

  34. Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL (2010) Aerobic Oxidation of Lignin Models Using a Base Metal Vanadium Catalyst. Inorg Chem 49:5611–5618. https://doi.org/10.1021/ic100528n

    Article  CAS  Google Scholar 

  35. Hanson SK, Baker RT, Gordon JC, Scott BL, Sutton A, Thorn D (2008) J Am Chem Soc 131:428–429. https://doi.org/10.1021/ja807522n

    Article  CAS  Google Scholar 

  36. Albert J, Lüders D, Bösmann A, Guldi DM, Wasserscheid P (2014) Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chem 16:226–237. https://doi.org/10.1039/C3GC41320A

    Article  CAS  Google Scholar 

  37. Wölfel R, Taccardi N, Bösmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13:2759. https://doi.org/10.1039/C1GC15434F

    Article  Google Scholar 

  38. Criegee R, Kraft L, Rank B (1933) Die Glykolspaltung, ihr Mechanismus und ihre Anwendung auf chemische Probleme. Justus Liebigs Ann Chem 507:159–197

    Article  CAS  Google Scholar 

  39. Heidt LJ, Gladding EK, Purves CB (1945) Paper Trade J 121:81

    Google Scholar 

  40. Buist GJ, Bunton CA (1954) The mechanism of oxidation of α-glycols by periodic acid. Part I. Ethylene glycol. Chem Soc 1406–1413. https://doi.org/10.1039/JR9540001406

  41. Buist GJ, Bunton CA, Miles JH (1957) 919. The mechanism of oxidation of α-glycols by periodic acid. Part III. Spectroscopic evidence for the formation of an intermediate. Chem Soc 4575–4579. https://doi.org/10.1039/JR9570004575

  42. Vennat M, Herson P, Brégeault JM, Shul’Pin M (2003) Vanadium-Catalysed Eur. J Inorg Chem 5:908–917

    Google Scholar 

  43. Khenkin AM, Neumann R (2008) Oxidative C−C Bond Cleavage of Primary Alcohols and Vicinal Diols Catalyzed by H 5 PV 2 Mo 10 O 40 by an Electron Transfer and Oxygen Transfer Reaction Mechanism. J Am Chem Soc 130:14474–14476. https://doi.org/10.1021/ja8063233

    Article  CAS  Google Scholar 

  44. Brégeault JM (2003) Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. Dalton Trans 17:3289–3302. https://doi.org/10.1039/B303073N

    Article  Google Scholar 

  45. Shaik S, Danovich D, Fiedler A, Schröder D, Schwarz H (1995) Two-State Reactivity in Organometallic Gas-Phase Ion Chemistry Helv. Chim Acta 78:1393–1407. https://doi.org/10.1002/hlca.19950780602

    Article  CAS  Google Scholar 

  46. Schröder D, Shaik S, Schwarz H (2000) Two-State Reactivity as a New Concept in Organometallic Chemistry. Acc Chem Res 33:139–145. https://doi.org/10.1021/ar990028j

    Article  CAS  Google Scholar 

  47. Shaik S, Hirao H (2007) Reactivity of High-Valent Iron–Oxo Species in Enzymes and Synthetic Reagents: A Tale of Many States. Acc Chem Res 40(7):532–542. https://doi.org/10.1021/ar600042c

    Article  CAS  Google Scholar 

  48. de Visser SP, Ogliaro F, Harris N, Shaik S (2001) Multi-State Epoxidation of Ethene by Cytochrome P450: A Quantum Chemical Study. J Am Chem Soc 123:3037–3047. https://doi.org/10.1021/ja003544+

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revis. C.01, A.03, Gaussian, Inc., Wallingford CT 

  50. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615. https://doi.org/10.1039/B810189B

    Article  CAS  Google Scholar 

  51. Chai, J.D., Head-Gordon, M.: Chem. Phys. 128, 084106 (2008). https://doi.org/10.1063/1.2834918

  52. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  53. Hamann DR (1989) Generalized norm-conserving pseudopotentials. Phys Rev B 40:2980–2987. https://doi.org/10.1103/PhysRevB.40.2980

    Article  CAS  Google Scholar 

  54. Dolg M, Cao X (2011) Chem Rev 112:403–480. https://doi.org/10.1021/cr2001383

    Article  CAS  Google Scholar 

  55. Ditchfield R, Hehre W, Pople J (1971) Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  56. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. J Phys Chem A 105:8111–8116. https://doi.org/10.1021/jp011945l

    Article  CAS  Google Scholar 

  57. Tomasi, J., Menucci, B., Cammi, R.: ChemInform. 36, (2005). https://doi.org/10.1021/cr9904009

  58. Maeda S, Harabuchi Y, Ono Y, Taketsugu T, Morokuma K (2014) Int J Quantum Chem 115:258–269. https://doi.org/10.1002/qua.24757

    Article  CAS  Google Scholar 

  59. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. University Press, Cambridge

  60. Jeffrey G (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  61. Honda D, Ikegami S, Inoue T, Ozeki T, Yagasaki A (2007) Protonation and Methylation of an Anderson-Type Polyoxoanion [IMo6 O 24] 5. Inorg Chem 46:1464–1470. https://doi.org/10.1021/ic061881z

    Article  CAS  Google Scholar 

  62. Alder K, Pascher F, Schmitz A (1943) Über die Anlagerung von Maleinsäure‐anhydrid und Azodicarbonsäure‐ester an einfach ungesättigte Koh an einfach ungesättigte Kohlenwasserstoffe. Zur Kenntnis von Substitutionsvorgängen in der Allyl‐Stellung. Ber Dtsch Chem Ges 76:27. https://doi.org/10.1002/cber.19430760105

    Article  Google Scholar 

  63. Sarma B, Efremenko I, Neumann R (2015) Oxygenation of Methylarenes to Benzaldehyde Derivatives by a Polyoxometalate Mediated Electron Transfer–Oxygen Transfer Reaction in Aqueous Sulfuric Acid. J Am Chem Soc 137:5916–5922. https://doi.org/10.1021/jacs.5b01745

    Article  CAS  Google Scholar 

  64. Efremenko I, Neumann R (2012) Computational Insight into the Initial Steps of the Mars–van Krevelen Mechanism: Electron Transfer and Surface Defects in the Reduction of Polyoxometalates. J Am Chem Soc 134:20669–20680. https://doi.org/10.1021/ja308625q

    Article  CAS  Google Scholar 

  65. Lu T, Chen F (2011) J Comp Chem 33:580–592. https://doi.org/10.1002/jcc.22885

  66. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. A., M. Z., A. S., and M. S. formulated the scientific idea and planned the computations in this study. M. A. and M. Z. performed the computational calculations and prepared the first draft for this manuscript. A. S. and M. S. supervised the project. A. S. and M. S. edited and reviewed the manuscript prior to submission. All authors contributed to the article and approved the contents of the manuscript.

Corresponding authors

Correspondence to Meriem Almi or Meijuan Zhou.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1507 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almi, M., Zhou, M., Saal, A. et al. Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5−. J Mol Model 29, 57 (2023). https://doi.org/10.1007/s00894-023-05458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05458-y

Keywords

Navigation