Skip to main content
Log in

Boron-doped armchair germanene nanoribbons with a width of six atoms in an external field: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) has been used to study the structure and electronic properties of boron-doped armchair germanene nanoribbons materials. The doped configurations are all stable in the electric field by the σ bond and the π bond. The doped structures can be semi-conductive or semi-metallic depending on the doping substitution positions. The doping configuration B:Ge = 1:1 proved to be superior and stable in the electric field, and the doping changed this structure to become planar. With three different directions of electric field, the horizontal electric field has the most influence on the geometric structure, multi-orbit hybridization as well as the spatial charge distribution of the doped systems. The magnetization of the systems changes with the changing direction of an electric field, anti-ferromagnetic structures are found in meta-configuration and ortho-configuration with longitudinal electric fields, and 1–1 configuration with perpendicular electric fields and horizontal electric fields. The ortho-configuration with an electric field of 0.5 V/m with an extended band gap of 0.69 eV is perfectly applicable in room-temperature field-effect transistors; other configurations have potential in nanoscale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  2. Peres NMR, Ribeiro RM (2009) Focus on graphene. New J Phys 11:095002. https://doi.org/10.1088/1367-2630/11/9/095002

    Article  CAS  Google Scholar 

  3. Stauber T, Peres NMR, Guinea F (2007) Electronic transport in graphene: a semiclassical approach including midgap states. Phys Rev B 76(20):205423. https://doi.org/10.1103/PhysRevB.76.205423

    Article  CAS  Google Scholar 

  4. Dean CR, Young AF, Cadden-Zimansky P et al (2011) Multicomponent fractional quantum Hall effect in graphene. Nat Phys 7(9):693–696. https://doi.org/10.1038/nphys2007

    Article  CAS  Google Scholar 

  5. Cooper DR, D’Anjou B, Ghattamaneni, et al (2012) Experimental review of graphene. ISRN Condensed Matter Physics 2012:1–56. https://doi.org/10.5402/2012/501686

    Article  CAS  Google Scholar 

  6. Dávila M, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two dimensional germanium allotrope akin to graphene and silicene. New J Phys 16(9):095002. https://doi.org/10.1088/1367-2630/16/9/095002

    Article  CAS  Google Scholar 

  7. Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102. https://doi.org/10.1063/1.3419932

    Article  CAS  Google Scholar 

  8. De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Bruno, et al (2010) Evidence of graphene-like electronic signature in silicene nanoribbons. Appl Phys Lett 96:261905. https://doi.org/10.1063/1.3459143

    Article  CAS  Google Scholar 

  9. Guy LL, De Padova P, Resta A, Bruhn T, Vogt P (2012) Epitaxial silicene: can it be strongly strained. J Phys D: Appl Phys 45:392001. https://doi.org/10.1088/0022-3727/45/39/392001

    Article  CAS  Google Scholar 

  10. De Pavoda P, Quaresima C, Olivieri B, Perfetti P, Le Lay G (2011) sp2 -like hybridization of silicon valence orbitals in silicene nanoribbons. Appl Phys Lett 98:081909. https://doi.org/10.1063/1.3557073

    Article  CAS  Google Scholar 

  11. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Phys Rev Lett 108:245501. https://doi.org/10.1103/physrevlett.108.245501

    Article  Google Scholar 

  12. Vogt P, De Padova P, Quaresima C, Frantzeskakis JAE, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Two dimensional Si layer epitaxied on LaAlO3(111) substrate: RHEED and XPS investigations. Phys Rev Lett 108:155501. https://doi.org/10.1088/1742-6596/491/1/012003

    Article  CAS  Google Scholar 

  13. Li L, Lu S-Z, Pan J, Qin Z, Wang Y-Q, Wang Y, Cao G, Du S, Gao H-J (2014) Buckled germanene formation on Pt(111). Adv Mater 26:4820. https://doi.org/10.1002/adma.201400909

    Article  CAS  Google Scholar 

  14. Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone.New J. Phys. 16: 095002. https://doi.org/10.1088/1367-2630/16/9/095002

  15. Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B andZandvliet H J W (2014) Germanene termination of Ge2Pt crystals on Ge(110). J Phys Condens Matter 26 (2014) 442001. https://doi.org/10.1088/0953-8984/26/44/442001

  16. Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous germanene layer on Al(111). Nano Lett 15:2510. https://doi.org/10.1021/acs.nanolett.5b00085

    Article  CAS  Google Scholar 

  17. Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko AN, Lingenfelder M, Brocks G, Poelsema B, Katsnelson MI, Zandvliet HJW (2015) Germanene: the germanium analogue of graphene. J Phys: Condens Matter 27(44):443002. https://doi.org/10.1088/0953-8984/27/44/443002

    Article  CAS  Google Scholar 

  18. Novoselov KS, Andreeva DV, WencaiRen and Guangcun Shan, (2019) Graphene and other two-dimensional materials. Front Phys 14:13301. https://doi.org/10.1007/s11467-018-0835-6

    Article  Google Scholar 

  19. Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250. https://doi.org/10.1103/PhysRev.176.250

    Article  Google Scholar 

  20. Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous germanene layer on Al (111). Nano Letters ACS Publications 15(4):2510–2516. https://doi.org/10.1021/acs.nanolett.5b00085

    Article  CAS  Google Scholar 

  21. Li L, Shuang-zan Lu, Pan J, Qin Z, Wang Y-q, Wang Y, Cao G-y, Shixuan Du, Gao H-J (2014) Buckled germanene formation on Pt(111). Adv Mater 26(28):4820–4824. https://doi.org/10.1002/adma.201400909

    Article  CAS  Google Scholar 

  22. Kyozaburo Takeda and Kenji Shiraishi (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50(1994):14916. https://doi.org/10.1103/PhysRevB.50.14916

    Article  Google Scholar 

  23. Guzmán-Verri GG, L. C. Lew Yan Voon, (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131. https://doi.org/10.1103/PhysRevB.76.075131

    Article  CAS  Google Scholar 

  24. Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804. https://doi.org/10.1103/PhysRevLett.102.236804

    Article  CAS  Google Scholar 

  25. Scalise E, Houssa M, van den Geoffrey Pourtois B, Broek V, Afanas’ev & André Stesmans, (2013) Vibrational properties of silicene and germanene. Nano Res 6:19–28. https://doi.org/10.1007/s12274-012-0277-3

    Article  CAS  Google Scholar 

  26. Houssa M, Pourtois G, Afanasév VV, Stesmans A (2010) Electronic properties of two-dimensional hexagonal germanium. Appl Phys Lett 96:082111. https://doi.org/10.1063/1.3332588

    Article  CAS  Google Scholar 

  27. Roome NJ, Carey JD (2014) Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl Mater Interfaces 6:7743. https://doi.org/10.1021/am501022x

    Article  CAS  Google Scholar 

  28. Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A (2015) Electronic and chemical properties of germanene: the crucial role of buckling. J Phys Chem C 119:3802. https://doi.org/10.1021/jp511488m

    Article  CAS  Google Scholar 

  29. Trivedi S, Srivastava A, Kurchania R (2014) Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. J Comput Theor Nanosci 11:781. https://doi.org/10.1166/jctn.2014.3428

    Article  CAS  Google Scholar 

  30. Cai Y, Chuu C-P, Wei CM, Chou MY, Stability and electronic properties of two-dimensional silicene and germanene on grapheme, (2013) Phys Rev B 88:245408. https://doi.org/10.1103/PhysRevB.88.245408

    Article  CAS  Google Scholar 

  31. Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, Lu J (2014) Tunable band gap in germanene by surface adsorption. Physica E 59:60–65. https://doi.org/10.1016/j.physe.2013.12.016

    Article  CAS  Google Scholar 

  32. Li X, Wu S, Zhou S, Zhu Z (2014) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res Lett 9:110. https://doi.org/10.1186/1556-276x-9-110

    Article  Google Scholar 

  33. Boettger JC, Trickey SB (2007) First-principles calculation of the spin-orbit splitting in graphene. Phys Rev B 75:121402(R). https://doi.org/10.1103/PhysRevB.75.121402

    Article  CAS  Google Scholar 

  34. Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J (2009) Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys Rev B 80(2009):235431. https://doi.org/10.1103/PhysRevB.80.235431

    Article  CAS  Google Scholar 

  35. Samir Abdelouahed A, Ernst J, Henk IV, Maznichenko, and I. Mertig, (2010) Spin-split electronic states in graphene: effects due to lattice deformation, Rashba effect, and adatoms by first principles. Phys Rev B 82:125424. https://doi.org/10.1103/PhysRevB.82.125424

    Article  CAS  Google Scholar 

  36. Liu C-C, Feng W, Yao Y (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107:076802. https://doi.org/10.1103/PhysRevLett.107.076802

    Article  CAS  Google Scholar 

  37. Ye X-S, Shao Z-G, Zhao H, Yang L, Wang C-L (2014) Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations. RSC Adv 4:21216. https://doi.org/10.1039/C4RA01802H

    Article  CAS  Google Scholar 

  38. Han W, Kawakami RK, Gmitra M, Fabian J (2014) Graphene spintronics. Nat Nanotechnol 9:794–807. https://doi.org/10.1038/nnano.2014.214

    Article  CAS  Google Scholar 

  39. Konschuh S, Gmitra M, Fabian J (2010) Tight-binding theory of the spin-orbit coupling in graphene. Phys Rev B 82:245412. https://doi.org/10.1103/PhysRevB.82.245412

    Article  CAS  Google Scholar 

  40. Joelson C. Garcia, Denille B. de Lima, Lucy V. C. Assali, and João F. Justo (2011) Group IV graphene- and graphane-like nanosheets. J. Phys. Chem. C 115 (27): 13242–13246. https://doi.org/10.48550/arXiv.1204.2875

  41. Xia W, Hu W, Li Z, Yang J (2014) A first-principles study of gas adsorption on germanene. Phys Chem Chem Phys 16(41):22495–22498. https://doi.org/10.1039/C4CP03292F

    Article  CAS  Google Scholar 

  42. Ghosal S, Bandyopadhyaya A, Jana D (2020) Electric field induced band tuning, optical and thermoelectric responses in tetragonal germanene: a theoretical approach. Phys Chem Chem Phys 35(22):19957–19968. https://doi.org/10.1039/D0CP03892J

    Article  Google Scholar 

  43. Raad Chegel and Somayeh Behzad (2020) Tunable electronic, optical, and thermal properties of two- dimensional germanene via an external electric field. Scientific Reports volume 10 (704): 1–12. https://www.nature.com/articles/s41598-020-57558-x

  44. Monshi MM, S. M. Aghaeiand I. Calizo, (2017) Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties. RSC Adv 31(7):18900–18908. https://doi.org/10.1039/C6RA25083A

    Article  Google Scholar 

  45. Hoang Van Ngoc, Trieu Quynh Trang, Air Xayyadeth and Chu Viet Ha (2021) Doping two boron atoms in germanene nanoribbons in an external electric field.J. Phys.: Conf. Ser. 2070: 012130. https://doi.org/10.1088/1742-6596/2070/1/012130

  46. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  48. Mortazavi B, Rahamanг O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T (2017) First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E 87:228–232. https://doi.org/10.1016/j.physe.2016.10.047

    Article  CAS  Google Scholar 

  49. Gupta SK, Singh D, Rajput K, Sonvane Y (2016) Germanene: a new electronic gas sensing material. RSC Adv 6(104):102264. https://doi.org/10.1039/C6RA11890A

    Article  CAS  Google Scholar 

  50. Hussain T, Kaewmaraya T, Chakraborty S, Vovusha H, Amornkitbamrung V, Ahuja R (2018) Defected and functionalized germanene-based nanosensors under sulfur comprising gas exposure. ACS Sensors 3(4):867. https://doi.org/10.1021/acssensors.8b00167

    Article  CAS  Google Scholar 

  51. Shiraz AK, Goharrizi AY, Mehrihamidi S (2019) The electronic and optical properties of armchair germanene nanoribbons. Physica E 107:150–153. https://doi.org/10.1016/j.physe.2018.11.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research used resources of the high-performance computer cluster (HPCC) at Thu Dau Mot University (TDMU), Binh Duong Province, Vietnam.

Funding

This research is funded by Thu Dau Mot University under grant number DT.21.2.045.

Author information

Authors and Affiliations

Authors

Contributions

Hoang Van Ngoc, Trieu Quynh Trang: conceptualization, methodology, software, investigation, and formal analysis. Hoang Van Ngoc, Chu Viet Ha: methodology, review, editing, and writing.

Corresponding author

Correspondence to Hoang Van Ngoc.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Ngoc, H., Trang, T.Q. & Ha, C.V. Boron-doped armchair germanene nanoribbons with a width of six atoms in an external field: a DFT study. J Mol Model 29, 20 (2023). https://doi.org/10.1007/s00894-022-05430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05430-2

Keywords

Navigation