Skip to main content
Log in

Computational study of the effect of size and surface functionalization on Au nanoparticles on their stability to study biological descriptors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effects of varying nanoparticle size; polyethylene glycol (PEG) molecule length, type, and density; and functional groups for drug delivery systems are investigated computationally. A molecular dynamics (MD) study in the framework of a Monte Carlo simulated annealing scheme is done on gold nanoparticles (Au NPs) for sizes of 2.6 nm, 3.4 nm and 6.8 nm. The bonding of PEG molecules is investigated, and the binding energy (BE) is analysed as a reference to chemisorption and physisorption of the molecules. To investigate the frontier molecular orbitals and molecular electrostatic potentials, density functional theory (DFT) simulations are also performed for various PEG lengths and functional groups (FGs). The study reports on three conclusions: firstly, reducing the Au NP size leads to coordination number (CN) loss as the number of lowly coordinated atoms increases with decreasing particle size. Secondly, the stability of the Au-PEG system is independent of length beyond \(n=2\). And due to PEG high steric repulsion, the number of these molecules that can be physically adsorbed to the surface is limited. And thirdly, the FGs can be grouped into electron-withdrawing group (–NTA, Biotin, COOH) and electron-donating group (–NH2, OH). In future work, we will study how these conclusions influence the Au drug delivery system toxicity and cellular uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rojo J, Sousa-Herves A, Mascaraque A (2017) Perspectives of carbohydrates in drug discovery. Compr Med Chem III(1–8):577–610. https://doi.org/10.1016/B978-0-12-409547-2.12311-X

    Article  Google Scholar 

  2. Jain KK (2020) An overview of drug delivery systems. In: Jain K (ed) Drug delivery systems. Methods in molecular biology, vol 2059. Humana, New York, pp 1–59. https://doi.org/10.1007/978-1-4939-9798-5_1

  3. Shah A, Aftab S, Nisar J, Naeem M, Jan F (2021) Journal of Drug Delivery Science and Technology Nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 62:102426. https://doi.org/10.1016/j.jddst.2021.102426

    Article  CAS  Google Scholar 

  4. Wanat K (2020) Biological barriers, and the influence of protein binding on the passage of drugs across them Drug-protein binding. Mol Biol Rep 47:3221–3231. https://doi.org/10.1007/s11033-020-05361-2

    Article  CAS  PubMed  Google Scholar 

  5. Jin H, Huang W, Zhu X, Zhou Y, Yan D (2012) Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chem Soc Rev 41:5986–5997. https://doi.org/10.1039/c2cs35130g

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, Li S, Wei Y (2012) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4:5581–5584. https://doi.org/10.1039/c2nr31281f

    Article  CAS  PubMed  Google Scholar 

  7. Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A (2017) Form Follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 117:11476–11521. https://doi.org/10.1021/acs.chemrev.7b00194

    Article  CAS  PubMed  Google Scholar 

  8. Sethi M, Sukumar R, Karve S, Werner ME, Wang EC, Moore DT, Kowalczyk SR, Zhang L, Wang AZ (2014) Effect of drug release kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale 6:2321–2327. https://doi.org/10.1039/c3nr05961h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeeshan A, Farhan M, Siddiqui A (2014) Nanomedicine and drug delivery: a mini review, International. Nano Lett 4:1–7. https://doi.org/10.1007/s40089-014-0094-7

    Article  CAS  Google Scholar 

  10. Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1(2019):1–30. https://doi.org/10.1007/s42452-019-0592-3

  11. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K, Ibrahim MNM (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:1–23. https://doi.org/10.3389/FCHEM.2020.00341/FULL

  12. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  13. Tao C (2018) Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol 67:537–543. https://doi.org/10.1111/lam.13082

    Article  CAS  PubMed  Google Scholar 

  14. Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ (2014) Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol Toxicol 54:581–598. https://doi.org/10.1146/annurev-pharmtox-010611-134615

    Article  CAS  PubMed  Google Scholar 

  15. Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864. https://doi.org/10.1007/s11671-009-9334-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi SY, Jeong S, Jang SH, Park J, Park JH, Ock KS, Lee SY, Joo SW (2012) In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. Toxicol In Vitro 26:229–237. https://doi.org/10.1016/j.tiv.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  17. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54. https://doi.org/10.3109/17435390.2010.489207

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM (2013) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0058208

  19. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles. Philos Trans Royal Soc A: Math Phys Eng Sci 368:1333–1383. https://doi.org/10.1098/rsta.2009.0273

    Article  CAS  Google Scholar 

  20. Adewale OB, Davids H, Cairncross L, Roux S (2019) Toxicological behavior of gold nanoparticles on various models : influence of physicochemical properties and other factors. Int J Toxicol 38:357–384. https://doi.org/10.1177/1091581819863130

    Article  CAS  PubMed  Google Scholar 

  21. Henz BJ, Chung PW, Andzelm JW, Chantawansri TL, Lenhart JL, Beyer FL (2011) Determination of binding energy and solubility parameters for functionalized gold nanoparticles by molecular dynamics simulation. Langmuir 27:7836–7842

    Article  CAS  PubMed  Google Scholar 

  22. Pengo P, Şologan M, Pasquato L, Guida F, Pacor S, Tossi A, Stellacci F, Marson D, Boccardo S, Pricl S, Posocco P (2017) Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. Eur Biophys J 46:749–771. https://doi.org/10.1007/s00249-017-1250-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ngake T, Nqayi S, Gulumian M, Cronjé S, Harris RA (2022) Recent developments in computational and experimental studies of physicochemical properties of Au and Ag nanostructures on cellular uptake and nanostructure toxicity. Biochim Biophys Acta (BBA) - General Subjects 1866:130170. https://doi.org/10.1016/J.BBAGEN.2022.130170

    Article  CAS  Google Scholar 

  24. Vetten M, Gulumian M (2019) Differences in uptake of 14 nm PEG-liganded gold nanoparticles into BEAS- 2B cells is dependent on their functional groups. Toxicol Appl Pharmacol 363:131–141. https://doi.org/10.1016/j.taap.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  25. Mabkhot YN, Aldawsari FD, Al-Showiman SS, Barakat A, Soliman SM, Iqbal Choudhary M, Yousuf S, Mubarak MS, Hadda TB (2015) Novel enaminone derived from thieno [2,3-b] thiene: synthesis, X-ray crystal structure, HOMO, LUMO, NBO analyses and biological activity. Chem Cent J 9:1–11. https://doi.org/10.1186/s13065-015-0100-9

    Article  CAS  Google Scholar 

  26. Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F (2021) Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and subs. J Chem Res 45:147–158. https://doi.org/10.1177/1747519820932091

    Article  CAS  Google Scholar 

  27. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725. https://doi.org/10.1063/1.1700523

    Article  CAS  Google Scholar 

  28. Wang S, Yan X, Su G, Yan B (2021) Cytotoxicity induction by the oxidative reactivity of nanoparticles revealed by a combinatorial gnp library with diverse redox properties. Molecules 26:5986–5997. https://doi.org/10.3390/molecules26123630

  29. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  30. Li H, Li L, Pedersen A, Gao Y, Khetrapal N, Jónsson H, Zeng XC (2015) Magic-number gold nanoclusters with diameters from 1 to 3.5 nm: relative stability and catalytic activity for CO oxidation. Nano Letters 15:682–688. https://doi.org/10.1021/nl504192u

    Article  CAS  PubMed  Google Scholar 

  31. Harris RA (2022) The PEGylated and non-PEGylated interaction of the anticancer drug 5-fluorouracil with paramagnetic Fe3O4 nanoparticles as drug carrier. J Mol Liq 360:1–11. https://doi.org/10.1016/j.molliq.2022.119515

  32. Reed JL (1997) Electronegativity: Chemical hardness I. J Phys Chem A 101:7396–7400. https://doi.org/10.1021/jp9711050

    Article  CAS  Google Scholar 

  33. Pearson RG (2005) Chemical hardness and density functional theory RALPH. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  34. Kumar S, Saini V, Maurya IK, Sindhu J, Kumari M, Kataria R, Kumar V (2018) Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: potential standalone or adjuvant antimicrobial agents. PLoS ONE 13:1–23. https://doi.org/10.1371/journal.pone.0196016

  35. Blazhynska MM, Kyrychenko A, Kalugin ON (2018) Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles. Mol Simul 44:981–991. https://doi.org/10.1080/08927022.2018.1469751

    Article  CAS  Google Scholar 

  36. Pauling L (1931) The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc 455:1367–1400

  37. Methfessel M, Hennig D, Scheffler M (1992) Calculated surface energies of the 4 d transition metals: A study of bond-cutting models. Appl Phys Solid Surf 55:442–448. https://doi.org/10.1007/BF00348331

    Article  Google Scholar 

  38. Vollath D, Fischer FD, Holec D (2018) Surface energy of nanoparticles - influence of particle size and structure, Beilstein. J Nanotechnol 9:2265–2276. https://doi.org/10.3762/bjnano.9.211

    Article  CAS  Google Scholar 

  39. Kokkin DL, Zhang R, Steimle TC, Wyse IA, Pearlman BW, Varberg TD (2015) Au-S bonding revealed from the characterization of diatomic gold sulfide, AuS. J Phys Chem A 119:11659–11667. https://doi.org/10.1021/acs.jpca.5b08781

    Article  CAS  PubMed  Google Scholar 

  40. Aihara JI (1999) Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495. https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  41. Ruiz-Morales Y (2002) HOMO-LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: a theoretical study. I J Phys Chem A 106:11283–11308. https://doi.org/10.1021/jp021152e

    Article  CAS  Google Scholar 

  42. Manolopoulos DE, May JC, Down SE (1991) Theoretical studies of the fullerenes: C34 to C70. Chem Phys Lett 181:105–111. https://doi.org/10.1016/0009-2614(91)90340-F

    Article  CAS  Google Scholar 

  43. Rambukwella M, Sakthivel NA, Delcamp JH, Sementa L (2018) Ligand structure determines nanoparticles’ atomic structure, metal-ligand interface and properties. Front Chem 6:1–7. https://doi.org/10.3389/fchem.2018.00330

  44. Elias DR, Poloukhtine A, Popik V, Tsourkas A (2013) Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine NBM 9:194–201. https://doi.org/10.1016/j.nano.2012.05.015

    Article  CAS  Google Scholar 

  45. Harris RA, Mlambo M, Mdluli PS (2016) Qualitative analysis of some alkanethiols on Au nanoparticles during SERS. RSC Adv 6:12131–12142. https://doi.org/10.1039/c5ra24795k

    Article  CAS  Google Scholar 

  46. Dudev M, Wang J, Dudev T, Lim C (2006) Factors governing the metal coordination number in metal complexes from cambridge structural database analyses. J Phys Chem B 110:1889–1895. https://doi.org/10.1021/jp054975n

    Article  CAS  PubMed  Google Scholar 

  47. Xiong X-G, Wang Y-L, Xu C-Q, Qiu Y-H, Wang L-S, Li J (2015) On the gold–ligand covalency in linear [AuX2]− complexes. Dalton Trans 44:5535. https://doi.org/10.1039/c4dt04031g

    Article  CAS  PubMed  Google Scholar 

  48. Anon, Coordination Numbers and Structures, (2021) 1–18. https://chem.libretexts.org/@go/page/151411 (accessed October 12, 2021)

  49. Reimers JR, Ford MJ, Halder A, Ulstrup J, Hush NS (2016) Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form. Proc Natl Acad Sci U S A 113:E1424–E1433. https://doi.org/10.1073/pnas.1600472113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zareie HM, Boyer C, Bulmus V, Nateghi E, Davis TP (2008) Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition. ACS Nano 2:757–765. https://doi.org/10.1021/nn800076h

    Article  CAS  PubMed  Google Scholar 

  51. Qi W, Huang B, Wang M (2009) Bond-length and -energy variation of small gold nanoparticles. J Comput Theor Nanosci 6:635–639. https://doi.org/10.1166/jctn.2009.1085

    Article  CAS  Google Scholar 

  52. Huang WJ, Sun R, Tao J, Menard LD, Nuzzo RG, Zuo JM (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313. https://doi.org/10.1038/nmat2132

    Article  CAS  PubMed  Google Scholar 

  53. Mlambo M, Harris RA, Mashazi P, Sabela M, Kanchi S, Madikizela LM, Shumbula PN, Moloto N, Hlatshwayo TT, Mdluli PS (2017) Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: surface enhancing Raman scattering and electrochemical studies. Appl Surf Sci 396:695–704. https://doi.org/10.1016/j.apsusc.2016.11.011

    Article  CAS  Google Scholar 

  54. Forest V, Pourchez J (2017) Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein corona. Mater Sci Eng, C 70:889–896. https://doi.org/10.1016/j.msec.2016.09.016

    Article  CAS  Google Scholar 

Download references

Funding

DSI grant number DSI/CON C2353/2021 and the National Research Foundations (NRF) grant number: PR_IFR220207659371.

Author information

Authors and Affiliations

Authors

Contributions

Mr. S. Nqayi (PhD candidate): simulation and modelling, collecting of data, writing of manuscript. Prof. M. Gulumian: co-supervisor, technical guidance, review of manuscript, grant holder. Dr. S. Cronje: co-supervisor, reviewing of manuscript. Prof. R.A. Harris: supervisor of Ph.D. candidate; assist with simulation and modelling, assist with writing/reviewing of manuscript, grant-holder.

Corresponding author

Correspondence to R. A. Harris.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors as listed have consented to the manuscript’s publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nqayi, S., Gulumian, M., Cronjé, S. et al. Computational study of the effect of size and surface functionalization on Au nanoparticles on their stability to study biological descriptors. J Mol Model 28, 376 (2022). https://doi.org/10.1007/s00894-022-05367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05367-6

Keywords

Navigation