Skip to main content
Log in

A multiscale ONIOM study of the buckminsterfullerene (C60) Diels–Alder reaction: from model design to reaction path analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The hybrid ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics) formalism is employed to investigate the Diels–Alder reaction of the buckminsterfullerene C60. Our computations suggest that the ONIOM2(M06-2X/6-31G(d): SVWN/STO-3G) model, enclosing both the diene and the pyracyclene fragment of C60 in the higher-layer, provides a reasonable trade-off between accuracy and computational cost as it comes to predicting reaction energetics. Moreover, the frontier molecular orbital (FMO) theory and activation strain model (ASM) are jointly relied on to rationalize the effect of –OH and –CN substituents on the activation barrier of this reaction. Finally, reaction paths are scrutinized to get insight into the various forces underpinning the process of cycloadduct formation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the datasets supporting the findings reported in this study are included in the manuscript and the supplementary material.

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  2. Huffman D, Kraetschmer W, Lamb L (1990) Fos-tiropoulos, k. Nature (London) 347:354

    Google Scholar 

  3. Hirsch A (2006) Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (b) 243(13):3209–3212

  4. Bingel C (1993) Cyclopropanierung von fullerenen. Chem Ber 126(8):1957–1959

    Article  CAS  Google Scholar 

  5. McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J Am Chem Soc 114(11):4412–4414

    Article  CAS  Google Scholar 

  6. Nakamura E et al (2000) Functionalized fullerene as an artificial vector for transfection. Angew Chem 112(23):4424–4427

    Article  Google Scholar 

  7. Bakry R et al (2007) Preparation of fullerenes and fullerene-based materials. Int J Nanomed 2(4):639–649

    CAS  Google Scholar 

  8. Segura JL, Mart´ın N, Guldi DM (2005) Materials for organic solar cells: the C60/π-conjugated oligomer approach. Chem Soc Rev 34(1):31–47

    Article  CAS  PubMed  Google Scholar 

  9. Jia L, Chen M, Yang S (2020) Functionalization of fullerene materials toward applications in perovskite solar cells. Mater Chemist Front 4(8):2256–2282

    Article  CAS  Google Scholar 

  10. Nebhani L, Barner-Kowollik C (2010) Functionalization of fullerenes with cyclopentadienyl and anthracenyl capped polymeric building blocks via Diels-Alder chemistry. Macromol Rapid Commun 31(14):1298–1305

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura E, Isobe H (2003) Functionalized fullerenes in water the first 10 years of their chemistry biology and nanoscience. Acc Chem Res 36(11):807–815

    Article  CAS  PubMed  Google Scholar 

  12. Rubin Y, Khan S, Freedberg DI, Yeretzian C (1993) Synthesis and X-ray structure of a Diels-Alder adduct of fullerene C60. J Am Chem Soc 115(1):344–345

    Article  CAS  Google Scholar 

  13. Reymond S, Cossy J (2008) Copper-catalyzed Diels-Alder reactions. Chem Rev 108(12):5359–5406

    Article  CAS  PubMed  Google Scholar 

  14. Powell WH et al (2002) Nomenclature for the C60-Ih and C70–D5h(6) fullerenes (IUPAC recommendations 2002). Pure Appl Chem 74(4):629–695

    Article  CAS  Google Scholar 

  15. Ala’a K et al (1990) Isolation separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J Chem Soc Chem Commun 20:1423–1425

    Google Scholar 

  16. Krygowski TM, Ciesielski A (1995) Local aromatic character of C60 and C70 and their derivatives. J Chem Inf Comput Sci 35(6):1001–1003

    Article  CAS  Google Scholar 

  17. Hedberg K et al (1991) Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science 254(5030):410–412

    Article  CAS  PubMed  Google Scholar 

  18. Pang LS, Wilson MA (1993) Reactions of fullerenes C60 and C70 with cyclopentadiene. J Phys Chem 97(26):6761–6763

    Article  CAS  Google Scholar 

  19. Ohno M, Azuma T, Kojima S, Shirakawa Y, Eguchi S (1996) Anefficient functionalization of [60]fullerene Diels-Alder reaction using 13-butadienes substituted with electron-withdrawing and electron-donating (silyloxy) groups. Tetrahedron 52(14):4983–4994

    Article  CAS  Google Scholar 

  20. Kr¨autler, B. et al (1996) A topochemically controlled, regiospecific fullerene bis-functionalization. Angewandte Chemie International Edition in English 35(11):1204–1206

    Article  Google Scholar 

  21. Hirsch A, Lamparth I, Gr¨osser, T, Karfunkel HR (1994) Regiochemistry of multiple additions to the fullerene core synthesis of a th-symmetric hexakis adduct of C60 with bis(ethoxycarbonyl) methylene. J Am Chem Society 116(20):9385–9386

    Article  CAS  Google Scholar 

  22. Wang G-W, Saunders M, Cross RJ (2001) Reversible Diels-Alder addition to fullerenes: a study of equilibria using 3He NMR spectroscopy. J Am Chem Soc 123(2):256–259

    Article  CAS  PubMed  Google Scholar 

  23. Sol´a M, Mestres J, Mart´ı J, Duran M (1994) An AM1 study of the reactivity of buckminsterfullerene (C60) in a Diels-Alder model reaction. Chemical physics letters 231(2–3):325–330

    Google Scholar 

  24. Sola M, Duran M, Mestres J (1996) Theoretical study of the regioselectivity of successive 1,3-butadiene Diels-Alder cycloadditions to C60. J Am Chem Soc 118(37):8920–8924

    Article  CAS  Google Scholar 

  25. Ravinder P, Subramanian V (2012) Density functional theory studies on the Diels-Alder reaction of [3]dendralene with C60: an attractive approach for functionalization of fullerene. Theoret Chem Acc 131(4):1–11

    Article  CAS  Google Scholar 

  26. Cui C-X, Liu Y-J (2015) Role of encapsulated metal cation in the reactivity and regioselectivity of the C60 Diels-Alder reaction. J Phys Chem A 119(12):3098–3106

    Article  CAS  PubMed  Google Scholar 

  27. Beheshtian J, Peyghan AA, Bagheri Z (2012) Theoretical investigation of C60 fullerene functionalization with tetrazine. Comput Theor Chem 992:164–167

    Article  CAS  Google Scholar 

  28. Ueno H et al (2014) Kinetic study of the Diels-Alder reaction of Li+@ C60 with cyclohexadiene: greatly increased reaction rate by encapsulated Li+. J Am Chem Soc 136(31):11162–11167

    Article  CAS  PubMed  Google Scholar 

  29. Svensson M et al (1996) ONIOM a multilayered integrated MO+ MM method for geometry optimizations and single point energy predictions A test for Diels-Alder reactions and Pt (P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100(50):19357–19363

  30. Honig B, Karplus M (1971) Implications of torsional potential of retinal isomers for visual excitation. Nature 229(5286):558–560

    Article  CAS  PubMed  Google Scholar 

  31. Thompson MA, Glendening ED, Feller D (1994) The nature of K+/crown ether interactions: a hybrid quantum mechanical-molecular mechanical study. J Phys Chem 98(41):10465–10476

    Article  CAS  Google Scholar 

  32. Wallrapp FH, Guallar V (2011) Mixed quantum mechanics and molecular mechanics methods: looking inside proteins. Wiley Interdisciplinary Reviews: Computational Molecular Science 1(2):315–322

    CAS  Google Scholar 

  33. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48(7):1198–1229

    Article  CAS  Google Scholar 

  34. Morokuma K, Wang Q, Vreven T (2006) Performance evaluation of the three-layer ONIOM method: case study for a zwitterionic peptide. J Chem Theory Comput 2(5):1317–1324

    Article  CAS  PubMed  Google Scholar 

  35. Osuna S, Morera J, Cases M, Morokuma K, Sola M (2009) Diels-Alder reaction between cyclopentadiene and C60: an analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes. J Phys Chem A 113(35):9721–9726

    Article  CAS  PubMed  Google Scholar 

  36. Osuna S, Houk KN (2009) Cycloaddition reactions of butadiene and 13-dipoles to curved arenes fullerenes and nanotubes theoretical evaluation of the role of distortion energies on activation barriers. Chem Eur J 15(47):13219–13231

  37. Cao Y, Osuna S, Liang Y, Haddon RC, Houk K (2013) Diels-Alder reactions of graphene: computational predictions of products and sites of reaction. J Am Chem Soc 135(46):17643–17649

    Article  CAS  PubMed  Google Scholar 

  38. Sanusi Z et al (2017) Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach. J Mol Graph Model 76:77–85

    Article  CAS  PubMed  Google Scholar 

  39. Giovane LM et al (1993) Kinetic stability of the fullerene C60-cyclopentadiene Diels-Alder adduct. J Phys Chem 97(33):8560–8561

    Article  CAS  Google Scholar 

  40. Goldstein E, Beno B, Houk K (1996) Density functional theory prediction of the relative energies and isotope effects for the concerted and stepwise mechanisms of the Diels-Alder reaction of butadiene and ethylene. J Am Chem Soc 118(25):6036–6043

    Article  CAS  Google Scholar 

  41. James NC, Um JM, Padias AB, Hall H Jr, Houk K (2013) Computational investigation of the competition between the concerted Diels-Alder reaction and formation of diradicals in reactions of acrylonitrile with non-polar dienes. J Org Chem 78(13):6582–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Souza MA, Ventura E, do Monte, SA. Riveros, JM. Longo, RL. (2016) Revisiting the concept of the (a)synchronicity of Diels-Alder reactions based on the dynamics of quasiclassical trajectories. Journal of Computational Chemistry 37(8):701–711

    Article  PubMed  Google Scholar 

  43. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  45. Tao J, Perdew J, Staroverov V, Scuseria G (2003) Fundamentals of time-dependent density functional theory. Phys Rev Lett 91:1464011–1464014

    Google Scholar 

  46. Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05–2x and M06–2x exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000

    Article  CAS  PubMed  Google Scholar 

  47. Houk KN (1975) Frontier molecular orbital theory of cycloaddition reactions. Acc Chem Res 8(11):361–369

    Article  CAS  Google Scholar 

  48. van Zeist W-J, Bickelhaupt FM (2010) The activation strain model of chemical reactivity. Org Biomol Chem 8:3118–3127

    Article  PubMed  Google Scholar 

  49. Isamura BK, Lobb KA (2022) AMADAR: a python-based package for the large scale prediction of Diels-Alder transition state geometries and IRC path analysis. Journal of Cheminformatics 14:39

    Article  PubMed  PubMed Central  Google Scholar 

  50. Frisch M et al (2009) Gaussian 09, revision e. 01. Gaussian Inc., Wallingford, CT

  51. Hanson RM (2010) Jmol–a paradigm shift in crystallographic visualization. J Appl Crystallogr 43(5):1250–1260

    Article  CAS  Google Scholar 

  52. Vmd: Visual molecular dynamics (1996) J Mol Graph 14(1), 33–38

  53. Slater JC (1951) Magnetic effects and the Hartree-Fock equation. Phys Rev 82:538–541

    Article  CAS  Google Scholar 

  54. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211

    Article  CAS  Google Scholar 

  55. Lundberg M, Morokuma K (2009) The ONIOM method and its applications to enzymatic reactions, 21–55. Springer, Netherlands

    Google Scholar 

  56. Bento AP, Sol`a, M. & Bickelhaupt, F. M. (2005) Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si). J Comput Chem 26(14):1497–1504

    Article  CAS  PubMed  Google Scholar 

  57. Poater J, Sol`a M, Duran M, Robles J (2002) Analysis of the effect of changing the a0 parameter of the Becke3-LYP hybrid functional on the transition state geometries and energy barriers in a series of prototypical reactions. Phys Chem Chem Phys 4:722–731

    Article  CAS  Google Scholar 

  58. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06–2x, and M06-hf density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117(47):12590–12600

    Article  CAS  PubMed  Google Scholar 

  59. Osuna S, Swart M, Sol`a M (2011) Dispersion corrections essential for the study of chemical reactivity in fullerenes. J Phys Chem A 115(15):3491–3496

    Article  CAS  Google Scholar 

  60. Baraban JH et al (2018) The molecular structure of gauche-1,3-butadiene: experimental establishment of non-planarity. Angew Chem Int Ed 57(7):1821–1825

    Article  CAS  Google Scholar 

  61. Sancho-Garc´ıa J, P´erez-Jim´enez AJ, Moscard´o F (2001) Description of C(sp2)-C(sp2) rotation in butadiene by density functionals. J Physical Chem A 105(51):11541–11548

    Article  Google Scholar 

  62. Engeln R, Consalvo D, Reuss J (1992) Evidence for a gauche minor conformer of 1,3-butadiene. Chem Phys 160(3):427–433

    Article  CAS  Google Scholar 

  63. Wubbels GG (2015) The Bell–Evans–Polanyi principle and the regioselectivity of electrophilic aromatic substitution reactions. Tetrahedron Lett 56(13):1716–1719

    Article  CAS  Google Scholar 

  64. Meng Q et al (2020) A theoretical investigation on Bell-Evans-Polanyi correlations for hydrogen abstraction reactions of large biodiesel molecules by H and OH radicals. Combust Flame 214:394–406

    Article  CAS  Google Scholar 

  65. Use of the Bell–Evans–Polanyi principle to predict regioselectivity of nucleophilic aromatic photosubstitution reactions (2014) Tetrahedron Letters 55(36), 5066–5069

  66. Anglada JM, Besalu´ E, Bofill JM, Crehuet R (1999) Prediction of approximate transition states by Bell–Evans–Polanyi principle: I. J Computational Chemistry 20(11):1112–1129

    Article  CAS  Google Scholar 

  67. de Visser SP et al (2021) Negative catalysis/non-Bell-Evans-Polanyi reactivity by metalloenzymes: examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 439:213914

    Article  Google Scholar 

  68. Hermet J, Torrent M, Bottin F, Dezanneau G, Geneste G (2014) Oxide ion and proton transport in Gd-doped barium cerate: a combined first-principles and kinetic Monte Carlo study. J Mater Chem A 2:9055–9066

    Article  CAS  Google Scholar 

  69. Pla P, Wang Y, Alcam´ı M (2020) When is the Bell–Evans–Polanyi principle fulfilled in Diels-Alder reactions of fullerenes? Phys Chem Chem Phys 22(16):8846–8852

    Article  CAS  PubMed  Google Scholar 

  70. Parr RG, Szentp´aly Lv, Liu S (1999) Electrophilicity index. J American Chemical Society 121(9):1922–1924

    Article  CAS  Google Scholar 

  71. Domingo LR (2016) Molecular electron density theory a modern view of reactivity in organic chemistry. Molecules 21(10)

  72. Dewar MJ (1984) Multibond reactions cannot normally be synchronous. J Am Chem Soc 106(1):209–219

    Article  CAS  Google Scholar 

  73. Nendel M, Tolbert LM, Herring LE, Islam MN, Houk K (1999) Strained allenes as dienophiles in the Diels-Alder reaction: an experimental and computational study. J Org Chem 64(3):976–983

    Article  CAS  PubMed  Google Scholar 

  74. Yepes D, Valenzuela J, Martínez-Araya JI, Pérez P, Jaque P (2019) Effect of the exchange-correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels-Alder reactions: a reaction force constant analysis. Phys Chem Chem Phys 21:7412–7428

    Article  CAS  PubMed  Google Scholar 

  75. Isamura BK, Lobb KA (2022) New insights into the (a) synchronicity of Diels-Alder reactions a theoretical study based on the reaction force analysis and atomic resolution of energy derivatives. Molecules 27(5)

  76. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14(12):363–368

    Article  CAS  Google Scholar 

  77. Toro-Labbé A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness. J Phys Chem A 103(22):4398–4403

    Article  Google Scholar 

  78. Inostroza-Rivera R, Herrera B, Toro-Labbé A (2014) Using the reaction force and the reaction electronic flux on the proton transfer of formamide derived systems. Phys Chem Chem Phys 16(28):14489–14495

    Article  CAS  PubMed  Google Scholar 

  79. Politzer P, Burda JV, Concha MC, Lane P, Murray JS (2006) Analysis of the reaction force for a gas phase S(N)2 process: CH3Cl+ H2O CH3OH+ HCl. J Phys Chem A 110(2):756–761

    Article  CAS  PubMed  Google Scholar 

  80. Yepes D et al (2013) The reaction force constant as an indicator of synchronicity/nonsynchronicity in [4+ 2] cycloaddition processes. Phys Chem Chem Phys 15(19):7311–7320

    Article  CAS  PubMed  Google Scholar 

  81. Jedrzejewski M, Ordon P, Komorowski L (2016) Atomic resolution for the energy derivatives on the reaction path. J Phys Chem A 120(21):3780–3787

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the BEBUC Scholarship system through the funding granted by Else-Kroener-Fresenius Stiftung. Bienfait K. Isamura is grateful to the Center for High Performance Computing (CHPC) for having provided the resources used to carry out this study (project CHEM0802) and the faculty of science (Rhodes University) for the science discretionary grant (SD06/2022). He also thanks Dr. Zainab Sanusi and Dr. Tshiwawa Tendamudzimu for having read the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.K. Isamura: methodology, investigation, formal analysis, writing—original draft. K.A. Lobb: conceptualization, supervision, funding acquisition, writing—review and editing. All the authors approved the current version of this manuscript.

Corresponding author

Correspondence to Bienfait Kabuyaya Isamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isamura, B.K., Lobb, K.A. A multiscale ONIOM study of the buckminsterfullerene (C60) Diels–Alder reaction: from model design to reaction path analysis. J Mol Model 28, 327 (2022). https://doi.org/10.1007/s00894-022-05319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05319-0

Keywords

Navigation