Skip to main content
Log in

Estimating structure, stability, and electronic properties on halogenated derivatives of 2-germabicyclo[1.1.1.]pentane-2-ylidenes at density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this computational survey, substituent effects of group 17 on the stability (singlet–triplet energy gaps, ΔEs–t) and reactivity of singlet (s) and triplet (t) forms of 2-germabicyclo[1.1.1.]pentane-2-ylidenes are considered by using B3LYP/6–311 +  + G**, B3LYP/aug-cc-pvtz, and B3LYP/def2-TZVP level of theories. In all germylene structures, singlets appear more stable than their corresponding triplet congeners, revealing a singlet ground state and the order of stability appears to be 1,3,4,4,5,5-hexachloro-2-germabicyclo[1.1.1.]pentane-2-ylidenes (3) > 1,3,4,4,5,5-hexabromo-2-germabicyclo[1.1.1.]pentane-2-ylidenes (4) > 1,3,4,4,5,5-hexafluoro-2-germabicyclo[1.1.1.]pentane-2-ylidenes (2) > 1,3,4,4,5,5-hexaiodo-2-germabicyclo[1.1.1.]pentane-2-ylidenes (5) > 2-germabicyclo[1.1.1.]pentane-2-ylidenes (1), at the three levels of theory. The positive and negative effects on germylene stability are LP(F, Cl, Br, and I) → LP*G̈e and σ(C-Ge) → σ*(C-F, Cl, Br, and I) interactions, respectively. The results of our calculations show that every singlet germylene with high LP(F, Cl, Br, and I) → LP*G̈e interactions has higher electrophilicity. Also, in going from the most electronegative F to the least electronegative I, the nucleophilicity index (N) for germylene increases. Finally, this survey introduces that germylene 4 s with rather high band gap (ΔEHOMO–LUMO = 97.19 kcal/mol), nucleophilicity (2.20 eV), and stability (ΔEs-t = 76.95 kcal/mol) has high proton affinity (171.55 kcal/mol) that can be applied as multidentate ligands and it is hoped that this will prompt experimental attention toward its.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

“Not applicable.”

Code availability

GAMESS program package, (U)B3LYP/6–311 +  + G** level of theory.

References

  1. Tomioka H (1997) Acc Chem Res 30:315

    Article  CAS  Google Scholar 

  2. Jutzi P, Kanne K, Krueger C (1986) Angew Chem Int Ed Engl 25(2):164–164

    Article  Google Scholar 

  3. Barrau J, Escudie J, Satge J (1990) Chem Rev 90:283–319

    Article  CAS  Google Scholar 

  4. Ohshita J, Iida T, Ikeda M, Uemura T, Ohta N, Kunai A, Organomet J (2004) Chem 689(9):1540–1545

    CAS  Google Scholar 

  5. Asay M, Jones C, Driess M (2011) Chem Rev 111:354–396

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida M, Tamaoki N (2002) Organometallics 21:2587–2589

    Article  CAS  Google Scholar 

  7. Nemirowski A, Schreiner PR (2007) J Org Chem 72(25):9533–9540

    Article  CAS  PubMed  Google Scholar 

  8. Neumann WP (1991) Chem Rev 91(3):311–334

    Article  CAS  Google Scholar 

  9. Barrau J, Escudie J, Satge J (1990) Chem Rev 90(1):283–319

    Article  CAS  Google Scholar 

  10. Lappert MF (1990) Coord Chem Rev 100:267–292

    Article  CAS  Google Scholar 

  11. Jutzi P, Kanne K, Krueger C (1986) Angew Chem Int Ed Engl 25(2):164–164

    Article  Google Scholar 

  12. Jutzi P, Holtmannm U, Kanne D, Kruger C, Blom R, Gleiter R, Hyla-Krypsin I (1989) Chem Ber 122(9):1629–1639

    Article  CAS  Google Scholar 

  13. Barrau J, Rima G (1998) Coord Chem Rev 178:593–622

    Article  Google Scholar 

  14. Vessally E (2008) Heteroat Chem 19(3):245–251

    Article  CAS  Google Scholar 

  15. Heaven MW, Metha GF, Buntine MA (2001) J Phys Chem A 105(7):1185–1196

    Article  CAS  Google Scholar 

  16. Biswas AK, Ganguly B (2017) Chem Eur J 23(11):2700–2705

    Article  CAS  PubMed  Google Scholar 

  17. Cernicharo J, Gottlieb CA, Guélin M, Killian TC, Paubert G, Thaddeus P, Vrtilek JM (1991) Astrophys J 368:L39–L41

    Article  CAS  Google Scholar 

  18. Redondo P, Redondo JR, Largo A (2000) J Mol Struct Theochem 505(1–3):221–232

    Article  CAS  Google Scholar 

  19. Thaddeus P, Vrtilek JM, Gottlieb CA (1985) Astrophys J 299:L63–L66

    Article  CAS  Google Scholar 

  20. Reisenauer HP, Maier G, Riemann A, Hoffmann RW (1984) Angew Chem Int Ed Engl 23(8):641–641

    Article  Google Scholar 

  21. Barthelat JC, Roch BS, Trinquier G, Satge J (1980) J Am Chem Soc 102(12):4080–4085

    Article  CAS  Google Scholar 

  22. Hadlington TJ, Driess M, Jones C (2018) Chem Soc Rev 47:4176–4197

    Article  CAS  PubMed  Google Scholar 

  23. Kirilchuk AA, Rozhenko AB, Leszczynski J (2017) Comput Theor Chem 1103:83–91

    Article  CAS  Google Scholar 

  24. Mizuhata Y, Sasamori T, Tokitoh N (2009) Chem Rev 109:3479–3511

    Article  CAS  PubMed  Google Scholar 

  25. Holthausen MC, Koch W, Apeloig Y (1999) J Am Chem Soc 121:2623–2624

    Article  CAS  Google Scholar 

  26. Jiang P, Gaspar PP (2001) J Am Chem Soc 123:8622–8623

    Article  CAS  PubMed  Google Scholar 

  27. Schreiner PR, Reisenauer HP, Allen WD, Sattelmeyer KW (2004) Org Lett 6:1163–1166

    Article  CAS  PubMed  Google Scholar 

  28. Abedini N, Kassaee MZ (2020) J Mol Model 26(11):1–11

    Article  CAS  Google Scholar 

  29. Abedini N, Kassaee MZ, (2021) J Phys Org Chem 34(8).

  30. Hoffmann R, Schleyer PvR, Schaefer HF (2008) Angew Chem Int Ed 47(38):7164–7167

    Article  CAS  Google Scholar 

  31. Schmidt W, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  32. Bao W, Li Y, Lu X (2013) Struct Chem 24:1615–1619

    Article  CAS  Google Scholar 

  33. Aysin RR, Bukalov SS, Leites LA, Zabula AV (2017) Dalton Trans 46:8774–8781

    Article  CAS  PubMed  Google Scholar 

  34. Schlegel HB, Frisch MJ (1995) Int J Quantum Chem 54:83

    Article  CAS  Google Scholar 

  35. Rostami Z, Asnaashariisfahan M, Ahmadi S, Hosseinian A, Ebadi A (2021) J Mol Struct 1238:130427. https://doi.org/10.1016/j.molstruc.2021.130427

  36. Aysin RR, Bukalov SS, Leites LA, Lalov AV, Tsys KV, Piskunov AV (2019) Organometallics 38(16):3174–3180

    Article  CAS  Google Scholar 

  37. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Rv NJ, Hommes E (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  38. Domingo LR, Chamorro E, Perez P (2008) J Org Chem 73:4615–4624

    Article  CAS  PubMed  Google Scholar 

  39. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  40. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  41. Abedini N, Kassaee MZ (2021) Struct Chem 32(3):1105–1112

    Article  CAS  Google Scholar 

  42. Scrocco E, Tomasi J (1973) New Concepts II 42:95–170

    Article  CAS  Google Scholar 

  43. Abedini N, Kassaee MZ, Cummings PT (2020) Theor Chem Acc 139(8):1–11

    Article  CAS  Google Scholar 

  44. Abedini N, Kassaee MZ, Cummings PT (2021) Silicon 13(10):3377–3383

    Article  CAS  Google Scholar 

  45. Abedini N, Kassaee MZ (2020) Comput Theor Chem 1190:112998

    Article  CAS  Google Scholar 

  46. Abedini N, Kassaee MZ (2021) J Mol Model 27(5):1–13

    Article  CAS  Google Scholar 

  47. Abedini N, Kassaee MZ (2022) Silicon 14:2089–2095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from Tarbiat Modares University (TMU) is gratefully acknowledged. Special thanks are due to Mrs. Shokufeh Mojtahedi for his continued encouragement and moral support.

Funding

This study is supported by the Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Ethics declarations

Ethical approval

“Not applicable.”

Consent to participate

We have consent to participate.

Consent for publication

We consent for publication.

Competing interests

“The authors declare no competing interests.”

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, N., Kassaee, M.Z. Estimating structure, stability, and electronic properties on halogenated derivatives of 2-germabicyclo[1.1.1.]pentane-2-ylidenes at density functional theory. J Mol Model 28, 207 (2022). https://doi.org/10.1007/s00894-022-05202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05202-y

Keywords

Navigation