Skip to main content
Log in

Spectroscopic constants and anharmonic force field of dithioformic acid and its isomers: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The potential astronomical interest dithioformic acid (trans-HC(= S)SH) exists five isomers and has received considerable attention of astronomical observation in recent years. The different positions of H atoms of five isomers lead to diverse point groups, dipole moments, and spectroscopic constants. The anharmonic force field and spectroscopic constants of them are calculated using CCSD(T) and B3LYP employing correlation consistent basis sets. Molecular structures, dipole moments, rotational constants, and fundamental frequencies of trans-HC(= S)SH are compared with the available experimental data. The B3LYP/Gen = 5 and CCSD(T)/Gen = Q results can reproduce them well. Molecular structures, dipole moments, relative energies, spectroscopic constants of cis-HC(= S)SH, and dithiohydroxy carbene (DTHC) are also calculated. The new data obtained in this study are expected to guide the future high resolution experimental work and to assist astronomical search for CH2S2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Martin-Drumel MA, Lee KLK, Belloche A, Zingsheim O, Thorwirth S, Müller HSP, Lewen F, Garrod RT, Menten KM, McCarthy MC, Schlemmer S (2019) Submillimeter spectroscopy and astronomical searches of vinyl mercaptan, C2H3SH. A&A 632:A167. https://doi.org/10.1051/0004-6361/201935032

    Article  CAS  Google Scholar 

  2. Margulès L, Ilyushin VV, McGuire BA, Belloche A, Motiyenko RA, Remijan A, Alekseev EA, Dorovskaya O, Guillemin JC (2020) Submillimeter-wave spectroscopy of and interstellar search for thioacetaldehyde. J Mol Spectrosc 371:111304. https://doi.org/10.1016/j.jms.2020.111304

    Article  CAS  Google Scholar 

  3. Sinclair MW, Fourikis N, Ribes JC, Robinson BJ, Brown RD, Godfrey PD (1973) Detection of interstellar thioformaldehyde. Aust J Phys 26:85–92. https://doi.org/10.1071/PH730085

    Article  CAS  Google Scholar 

  4. Kolesniková L, Tercero B, Cernicharo J, Alonso JL, Daly AM, Gordon BP, Shipman ST (2014) Spectroscopic characterization and detection of Ethyl Mercaptan in Orion. Astrophys J Lett 784:L7. https://doi.org/10.1088/2041-8205/784/1/L7

    Article  CAS  Google Scholar 

  5. Ilyushin V, Armieieva I, Dorovskaya O, Pogrebnyak M, Krapivin I, Alekseev E, Margulès L, Motiyenko R, Tchana FK, Jabri A, Manceron L, Bekhtereva ES, Bauerecker S, Maul C (2020) Microwave and FIR spectroscopy of dimethylsulfide in the ground, first and second excited torsional states. J Mol Struct 1200:127114. https://doi.org/10.1016/j.molstruc.2019.127114

    Article  CAS  Google Scholar 

  6. Cernicharo J, Cabezas C, Endo Y, Marcelino N, Agúndez M, Tercero B, Gallego JD, de Vicente P (2021) Space and laboratory discovery of HC3S+. A&A 646:L3. https://doi.org/10.1051/0004-6361/202040013

    Article  Google Scholar 

  7. Cernicharo J, Cabezas C, Agúndez M, Tercero B, Pardo JR, Marcelino N, Gallego JD, Tercero F, López-Pérez JA, de Vicente P (2021) TMC-1, the starless core sulfur factory: discovery of NCS, HCCS, H2CCS, H2CCCS, and C4S and detection of C5S. A&A 648:L3. https://doi.org/10.1051/0004-6361/202140642

    Article  CAS  Google Scholar 

  8. Weaver SLW (2019) Millimeterwave and submillimeterwave laboratory spectroscopy in support of observational astronomy. Annu Rev Astron Astrophys 57:79–112. https://doi.org/10.1146/annurev-astro-091918-104438

    Article  Google Scholar 

  9. Huang JH, Han KL, Zhu RS, He GZ, Lou NQ (1998) Unimolecular pyrolysis mechanisms of monothioformic and dithioformic acids. An ab initio study and evaluation of rate constant. J Phys Chem A 102:2044–2049. https://doi.org/10.1021/jp973213s

    Article  CAS  Google Scholar 

  10. Prudenzano D, Laas J, Bizzocchi L, Lattanzi V, Endres C, Giuliano BM, Spezzano S, Palumbo ME, Caselli P (2018) Accurate millimetre and submillimetre rest frequencies for cis- and trans-dithioformic acid. HCSSH A&A 612:A56. https://doi.org/10.1051/0004-6361/201732397

    Article  CAS  Google Scholar 

  11. Biczysko M, Bloino J, Puzzarini C (2017) Computational challenges in Astrochemistry. WIREs Comput Mol Sci e1349. https://doi.org/10.1002/wcms.1349

  12. Vivekananda S, Srinivas R, Manoharan M, Jemmis ED (1999) Generation and identification of ionic and neutral dithioformic acid [HC(S)SH], dimercaptocarbene [HSCSH], and dithiirane [H2C(S2)]: a neutralization-reionization mass spectrometry and theoretical study. J Phys Chem A 103:5123–5128. https://doi.org/10.1021/jp984558t

    Article  CAS  Google Scholar 

  13. Nguyen MT, Nguyen TL, Le HT (1999) Theoretical study of dithioformic acid, dithiohydroxy carbene and their radical cations: unimolecular and assisted rearrangements. J Phys Chem A 103:5758–5765. https://doi.org/10.1021/jp983658w

    Article  CAS  Google Scholar 

  14. Smeyers YG, Villa M, Cárdenas-Jirón GI, Toro-Labbé A (1998) Dynamical and spectroscopic study of internal rotation in formic, thiolformic, thionformic and dithioformic acids using a reduced potential model. J Mol Struct (Theochem) 426:155–163. https://doi.org/10.1016/S0166-1280(97)00316-3

    Article  CAS  Google Scholar 

  15. Xie XG, Tao YQ, Cao H, Duang WG (1996) Ab initio study of unimolecular pyrolysis mechanisms of dithioformic acid. Chem Phys 213:133–137. https://doi.org/10.1016/S0301-0104(96)00286-8

    Article  CAS  Google Scholar 

  16. Bohn RB, Brabson GD, Andrews L (1992) Reaction of atomic hydrogen and carbon disulfide. Infrared spectra of HSCS and HSHCS in solid Argon. J Phys Chem 96:1582–1589. https://doi.org/10.1021/j100183a019

    Article  CAS  Google Scholar 

  17. Tao YQ (1991) Isomerization and unimolecular rearrangement channels of dithioformic acid. Chem Phys 154:22l–225. https://doi.org/10.1016/0301-0104(91)80073-Q

    Article  Google Scholar 

  18. Ioannoni F, Moule DC, Goddard JD, Clouthier DJ (1989) Thiocarbonyl spectroscopy: the infrared spectrum and ab initio vibrational frequencies of cis- and trans-dithioformic acid in the \({\tilde{X }}^{1}{A}^{^{\prime}}\) ground state. J Mol Struct 197 159-170https://doi.org/10.1016/0022-2860(89)85159-2

  19. Fausto R, Batista de Carvalho LAE, Teixeira-Dias JJC, Ramos MN (1989) s-cis and s-trans conformers of formic, thioformic and dithioformic acids. J Chem Soc 85:1945–1962. https://doi.org/10.1039/F29898501945

    Article  CAS  Google Scholar 

  20. Fausto R, Teixeira-Dias JJC, Carey PR (1987) Ab initio structural and conformational studies of HCSSH, CH3CSSH and HCSSCH3. J Mol Struct (Theochem) 152:119–135. https://doi.org/10.1016/0166-1280(87)87010-0

    Article  Google Scholar 

  21. So SP (1986) Stuctures, relative stabilities and barriers to internal rotation of dithioformic acid and its isomers. J Mol Struct (Theochem) 148:153–161. https://doi.org/10.1016/0166-1280(86)85013-8

    Article  Google Scholar 

  22. Bak B, Nielsen O, Svanholt H (1979) Rotational spectra of isotopic di-thioformic acids with a structure of trans HCSSH: Ab initio estimates of cis/trans structures, energies, dipole moments, and torsional barrier. J Mol Spectr 75:134–143. https://doi.org/10.1016/0022-2852(79)90154-1

    Article  CAS  Google Scholar 

  23. Bak B, Nielsen OJ, Svanholt H (1978) Production and microwave spectra of dithioformic acid. HCSSH J Mol Spectr 69:401–408. https://doi.org/10.1016/0022-2852(78)90233-3

    Article  CAS  Google Scholar 

  24. Gattow G, Engler R (1971) Über die Dithioameisensäure. Naturwissenschaften 58:53. https://doi.org/10.1007/BF00620806

    Article  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III. The Role of Exact Exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  26. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D.01

  28. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  29. Dunning TH Jr, Peterson KA, Wilson AK (2001) Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J Chem Phys 114:9244–9253. https://doi.org/10.1063/1.1367373

    Article  CAS  Google Scholar 

  30. Peterson KA, Dunning TH Jr (2002) Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al-Ar, and the first row atoms B-Ne revisited. J Chem Phys 117:10548–10560. https://doi.org/10.1063/1.1520138

    Article  CAS  Google Scholar 

  31. CFOUR (Coupled Cluster Techniques for Computational Chemistry), a quantum-chemical program package by Stanton JF, Gauss J, Harding ME, and Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Christiansen O, Heckert M, Heun O, Huber C, Jagau TC, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews D, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Stopkowicz S, Varner ME, Vázquez J, Watts JD, Wang F and the integral packages MOLECULE (J. Almlöf and P. R. Taylor) PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wullen. For the current version, see http://www.cfour.de.

  32. Pang WX, Wang MS, Yang CL, Zhang YF (2007) Ab initio study of spectroscopic constants and anharmonic force field of 74GeCl2. J Chem Phys 126:194301. https://doi.org/10.1063/1.2733654

    Article  CAS  PubMed  Google Scholar 

  33. Pang WX, Sun YB, Zhao JJ, Lu Y (2016) Ab initio study of anharmonic force field and spectroscopic constants for germanium dichloride. Chin J Chem Phys 29:657–662. https://doi.org/10.1063/1674-0068/29/cjcp1604076

    Article  CAS  Google Scholar 

  34. Pang WX, Wu HY, Zhao JJ, Lu Y, Sun YB (2017) DFT anharmonic force field, and spectroscopic constants for phosphaethene, CH2PH. Main Group Chem 16:207–216. https://doi.org/10.3233/MGC-170237

    Article  CAS  Google Scholar 

  35. Pang WX, Wu HY, Zhao JJ, Sun YB (2019) Theoretical study of anharmonic force field and spectroscopic constants for 1-chlorophosphaethene, CH2PCl and CD2PCl. Phosphorus. Sulfur Silicon Relat Elem 194:69–75. https://doi.org/10.1080/10426507.2018.1490283

    Article  CAS  Google Scholar 

  36. Puzzarini C, Penocchio E, Biczysko M, Barone V (2014) Molecular structure and spectroscopic signatures of acrolein: theory meets experiment. J Phys Chem A 118:6648–6656. https://doi.org/10.1021/jp503672g

    Article  CAS  PubMed  Google Scholar 

  37. Puzzarini C, Barone V (2018) Diving for accurate structures in the ocean of molecular systems with the help of spectroscopy and quantum chemistry. Acc Chem Res 51:548–556. https://doi.org/10.1021/acs.accounts.7b00603

    Article  CAS  PubMed  Google Scholar 

  38. Ye H, Mendolicchio M, Kruse H, Puzzarini C, Biczysko M, Barone V (2020) The challenging equilibrium structure of HSSH: Another success of the rotational spectroscopy / quantum chemistry synergism. J Mol Struct 1211:127933. https://doi.org/10.1016/j.molstruc.2020.127933

    Article  CAS  Google Scholar 

  39. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646. https://doi.org/10.1063/1.473863

    Article  CAS  Google Scholar 

  40. Barone V (2016) The virtual multifrequency spectrometer: a new paradigm for spectroscopy. WIREs Comput Mol Sci 6:86–110. https://doi.org/10.1002/wcms.1238

    Article  CAS  Google Scholar 

  41. Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C, Lipparini F (2012) Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 14:12404–12422. https://doi.org/10.1039/c2cp41006k

    Article  CAS  PubMed  Google Scholar 

  42. Zaidi A, Lahmar S, Lakhdar ZB, Rosmus P, Flament JP (2003) Theoretical study of the MgSH radical. J Mol Struct (Theochem) 634:299–304. https://doi.org/10.1016/S0166-1280(03)00382-8

    Article  CAS  Google Scholar 

  43. Zhao YL, Wang MS, Yang CL, Ma XG, Zhu ZL (2016) The spectroscopic constants and anharmonic force field of AgSH: An ab initio study. Spectrochim Acta A 164:89–92. https://doi.org/10.1016/j.saa.2016.03.033

    Article  CAS  Google Scholar 

  44. Zhao YL, Wang MS, Yang CL, Ma XG et al (2017) Computational anharmonic force fields of CuSH and CuSD. J Phys B: At Mol Opt Phys 50(155102):1–9. https://doi.org/10.1088/1361-6455/aa798f

    Article  CAS  Google Scholar 

  45. Demaison J, Herman M, Lievin J (2007) Anharmonic force field of cis- and trans-formic acid from high-level ab initio calculations, and analysis of resonance polyads. J Chem Phys 126:164305. https://doi.org/10.1063/1.2722752

    Article  CAS  PubMed  Google Scholar 

  46. Herzberg G Molecular spectra and molecular structure, II. Infrared and raman spectra of polyatomic molecules (Van Nostrand Reinhold, New York, 1945), 196.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.11474142), the Natural Science Foundation of Inner Mongolia (Inner Mongolia Natural Science Foundation, Grant No. 2020MS01023), and the Natural Science Foundation of Shandong Province (Grant No. ZR2020MA079).

Author information

Authors and Affiliations

Authors

Contributions

Weixiu Pang: writing—original draft; methodology, data curation. Xiaomin Song: formal analysis; writing—review and editing. Yunbin Sun: software, writing—review and editing. Meishan Wang: supervision; writing—review and editing; project administration.

Corresponding author

Correspondence to Meishan Wang.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4223 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, W., Song, X., Sun, Y. et al. Spectroscopic constants and anharmonic force field of dithioformic acid and its isomers: a theoretical study. J Mol Model 28, 173 (2022). https://doi.org/10.1007/s00894-022-05166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05166-z

Keywords

Navigation