Skip to main content
Log in

Comparative analysis of compound NSC13728 as Omomyc homodimer stabilizer by molecular dynamics simulation and MM/GBSA free energy calculation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Myc is a master transcriptional regulator that controls almost all cellular processes, whose function is dependent on dimerization with its obligate partner Max. Stabilization of Max homodimer by small molecules (such as compound NSC13728) has proven an effective way to reduce the availability of Myc-Max dimer. Omomyc, a peptide inhibitor of Myc, is able to form Omomyc homodimer, which can competitively inhibit the binding of Myc-Max to the E-box of DNA. Considering the high amino acid sequence homology between Omomyc and Max, we put forward the hypothesis that Max-Max stabilizers could stabilize the Omomyc homodimer. Hence, through molecular dynamics (MD) simulation and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation, we discovered that the stability of Omomyc-Omomyc is remarkably higher than that of Max-Max. Moreover, after adding the compound NSC13728 into the well-defined “Site 3,” the binding affinity between two Omomyc monomers can be further increased. Compound NSC13728 has stronger binding interaction to Omomyc-Omomyc than to Max-Max. “Site 3” of Omomyc is more hydrophobic than that of Max, which enlightens us that the more potent Omomyc-Omomyc stabilizers may be hydrophobic in structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, Tamachi A, Tu WB, Penn LZ (2017) MYC Deregulation in Primary Human Cancers. Genes (Basel) 8:https://doi.org/10.3390/genes8060151

  2. Devaiah BN, Mu J, Akman B, Uppal S, Weissman JD, Cheng D, Baranello L, Nie Z, Levens D, Singer DS (2020) MYC protein stability is negatively regulated by BRD4. Proc Natl Acad Sci U S A 117:13457–13467. https://doi.org/10.1073/pnas.1919507117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dang CV (1991) c-myc oncoprotein function. Biochim Biophys Acta 1072:103–113. https://doi.org/10.1016/0304-419x(91)90009-a

    Article  CAS  PubMed  Google Scholar 

  4. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645. https://doi.org/10.1038/nrm1703

    Article  CAS  PubMed  Google Scholar 

  5. Allen-Petersen BL, Sears RC (2019) Mission Possible: Advances in MYC Therapeutic Targeting in Cancer. BioDrugs 33:539–553. https://doi.org/10.1007/s40259-019-00370-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Massó-Vallés D, Beaulieu ME, Soucek L (2020) MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets 24:101–114. https://doi.org/10.1080/14728222.2020.1723548

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 3:5. https://doi.org/10.1038/s41392-018-0008-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bretones G, Delgado MD, León J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849:506–516. https://doi.org/10.1016/j.bbagrm.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  9. Baluapuri A, Wolf E, Eilers M (2020) Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 21:255–267. https://doi.org/10.1038/s41580-020-0215-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Zhang XA, Li X, Xie W, Huang S (2015) MYC-mediated synthetic lethality for treating tumors. Curr Cancer Drug Targets 15:99–115. https://doi.org/10.2174/1568009615666150121162921

    Article  CAS  PubMed  Google Scholar 

  11. Thompson EB (1998) The many roles of c-Myc in apoptosis. Annu Rev Physiol 60:575–600. https://doi.org/10.1146/annurev.physiol.60.1.575

    Article  CAS  PubMed  Google Scholar 

  12. Wade M, Wahl GM (2006) c-Myc, genome instability, and tumorigenesis: the devil is in the details. Curr Top Microbiol Immunol 302:169–203. https://doi.org/10.1007/3-540-32952-8_7

    Article  CAS  PubMed  Google Scholar 

  13. Wang XN, Su XX, Cheng SQ, Sun ZY, Huang ZS, Ou TM (2019) MYC modulators in cancer: a patent review. Expert Opin Ther Pat 29:353–367. https://doi.org/10.1080/13543776.2019.1612878

    Article  CAS  PubMed  Google Scholar 

  14. Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S (1998) Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17:2463–2472. https://doi.org/10.1038/sj.onc.1202199

    Article  CAS  PubMed  Google Scholar 

  15. Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112:193–205. https://doi.org/10.1016/s0092-8674(02)01284-9

    Article  CAS  PubMed  Google Scholar 

  16. Allison SD, Romero-Olivares AL, Lu Y, Taylor JW, Treseder KK (2018) Temperature sensitivities of extracellular enzyme V(max) and K(m) across thermal environments. Glob Chang Biol 24:2884–2897. https://doi.org/10.1111/gcb.14045

    Article  PubMed  Google Scholar 

  17. Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T (2003) An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem 278:52953–52963. https://doi.org/10.1074/jbc.M309770200

    Article  CAS  PubMed  Google Scholar 

  18. Jiang H, Bower KE, Beuscher AE, Zhou B, Bobkov AA, Olson AJ, Vogt PK (2009) Stabilizers of the Max homodimer identified in virtual ligand screening inhibit Myc function. Mol Pharmacol 76:491–502. https://doi.org/10.1124/mol.109.054858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soucek L, Nasi S, Evan GI (2004) Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 11:1038–1045. https://doi.org/10.1038/sj.cdd.4401443

    Article  CAS  PubMed  Google Scholar 

  20. Brown ZZ, Mapelli C, Farasat I, Shoultz AV, Johnson SA, Orvieto F, Santoprete A, Bianchi E, McCracken AB, Chen K, Zhu X, Demma MJ, Lacey BM, Canada KA, Garbaccio RM, O’Neil J, Walji A (2020) Multiple Synthetic Routes to the Mini-Protein Omomyc and Coiled-Coil Domain Truncations. J Org Chem 85:1466–1475. https://doi.org/10.1021/acs.joc.9b02467

    Article  CAS  PubMed  Google Scholar 

  21. Massó-Vallés D, Soucek L (2020) Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. Cells 9:https://doi.org/10.3390/cells9040883

  22. Jung LA, Gebhardt A, Koelmel W, Ade CP, Walz S, Kuper J, von Eyss B, Letschert S, Redel C, d’Artista L, Biankin A, Zender L, Sauer M, Wolf E, Evan G, Kisker C, Eilers M (2017) OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 36:1911–1924. https://doi.org/10.1038/onc.2016.354

    Article  CAS  PubMed  Google Scholar 

  23. Mongiardi MP, Savino M, Bartoli L, Beji S, Nanni S, Scagnoli F, Falchetti ML, Favia A, Farsetti A, Levi A, Nasi S, Illi B (2015) Myc and Omomyc functionally associate with the Protein Arginine Methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep 5:15494. https://doi.org/10.1038/srep15494

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45. https://doi.org/10.1038/363038a0

    Article  PubMed  Google Scholar 

  25. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. https://doi.org/10.1002/jcc.10349

    Article  CAS  PubMed  Google Scholar 

  27. M. J. Frisch GWT, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

  28. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. An Y, Meng C, Chen Q, Gao J (2020) Discovery of small molecule sirt1 activator using high-throughput virtual screening, molecular dynamics simulation, molecular mechanics generalized born/surface area (MM/GBSA) calculation, and biological evaluation. Med Chem Res 29:255–261. https://doi.org/10.1007/s00044-019-02479-2

    Article  CAS  Google Scholar 

  30. Shi S, Wang Q, Liu S, Qu Z, Li K, Geng X, Wang T, Gao J (2021) Characterization the performances of twofold resveratrol integrated compounds in binding with SIRT1 by molecular dynamics simulation and molecular mechanics/generalized born surface area (MM/GBSA) calculation. Chem Phys 544:111108. https://doi.org/10.1016/j.chemphys.2021.111108

    Article  CAS  Google Scholar 

  31. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394. https://doi.org/10.1002/prot.20033

    Article  CAS  PubMed  Google Scholar 

  32. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2%3c217::AID-JCC4%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (grant number BK20201157), the Six Talent Peaks Project in Jiangsu Province (grant number YY-046), and the Qinglan Project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Contributions

Jian Gao, Yinchuan Wang, Kaihang Li, and Jinyuan Zhang performed the molecular dynamics simulations; Xiaoju Geng and Jinyuan Zhang performed the MM/GBSA binding free energy calculations; Jian Gao, Yinchuan Wang, Kaihang Li, and Jinyuan Zhang analyzed the data and wrote the paper.

Corresponding author

Correspondence to Jian Gao.

Ethics declarations

Ethics declarations

We did not perform any experiments when preparing this article, so neither ethics review nor informed consent was necessary.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wang, Y., Li, K. et al. Comparative analysis of compound NSC13728 as Omomyc homodimer stabilizer by molecular dynamics simulation and MM/GBSA free energy calculation. J Mol Model 28, 92 (2022). https://doi.org/10.1007/s00894-022-05082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05082-2

Keywords

Navigation