Skip to main content
Log in

Influence of elemental composition on structural, thermal and hydration behavior of gold-silver bimetallic nanoparticles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, molecular dynamics simulations (MDs) have been employed to explore the influence of elemental composition on the structural, thermal, and hydration behavior of the core–shell gold-silver bimetallic nanoparticles with three different concentrations Au135Ag114, Au87Ag162, and Au55Ag194. The pure gold and silver metal nanoparticles have also been studied for the sake of comparison. The calculated cohesive and formation energy values reveal the enhancement in the stability of gold-silver bimetallic nanoparticles with the increase in the concentration of gold. The specific heat capacity value of the bimetallic gold-silver nanoparticles has been found to increase linearly with the concentration of silver. This suggests that the specific heat capacity value of the gold-silver bimetallic nanoparticles may be improved by raising their silver concentration. The enhancement of specific heat capacity value with respect to the concentration of silver may be attributed to the enhanced phonon density. There is no significant difference in the computed hydration shell and water residence time of the gold-silver bimetallic nanoparticles with respect to their mixing ratio. The obtained stable structure, tunable specific heat capacity values, and the predicted hydration properties of the gold-silver bimetallic nanoparticles may be harnessed for their technological and biological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

Code availability

NAMD package.

References

  1. Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y (2016) Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev 116:10414–10472

    Article  CAS  PubMed  Google Scholar 

  2. Medynska AZ, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Coll Interface Sci 229:80–107

    Article  Google Scholar 

  3. Namara KMc, Tofail SAM (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17:27981–27995

    Article  Google Scholar 

  4. Roopan SM, Surendra TV, Elango G, Kumar SHS (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300

    Article  CAS  PubMed  Google Scholar 

  5. Guisbiers G, Cruz RM, Diaz LB et al (2016) Electrum, the gold−silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10:188–198

    Article  CAS  PubMed  Google Scholar 

  6. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  PubMed  Google Scholar 

  7. Russo V, Michieli N, Cesca T, Scian C, Silvestri D, Morpurgo M, Mattei G (2017) Gold–silver alloy semi-nanoshell arrays for label-free plasmonic biosensors. Nanoscale 9:10117–10125

    Article  CAS  PubMed  Google Scholar 

  8. Cardinal MF, lez BRG, Puebla RAA, Juste JP, Marzan LML (2010) Modulation of localized surface plasmons and SERS response in gold dumbbells through silver coating. J Phys Chem C 114:10417–10510

    Article  Google Scholar 

  9. Fasciani C, Silvero MJ, Anghel MA et al (2014) Aspartame-stabilized gold−silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J Am Chem Soc 136:17394–17397

    Article  CAS  PubMed  Google Scholar 

  10. Padmos JD, Langman M, MacDonald K et al (2015) Correlating the atomic structure of bimetallic silver−gold nanoparticles to their antibacterial and cytotoxic activities. J Phys Chem C 119:7472–7482

    Article  CAS  Google Scholar 

  11. Cheng LC, Huang JH, Chen HM et al (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22:2244

    Article  Google Scholar 

  12. Naha PC, Lau KC, Hsu JC et al (2016) Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale 8:13740–13754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dutta D, Chattopadhyay A, Ghosh SS (2016) Cationic BSA templated Au−Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomater Sci Eng 2:2090–2098

    Article  CAS  PubMed  Google Scholar 

  14. Zarick HF, Erwin WR, Aufrecht J et al (2014) Morphological modulation of bimetallic nanostructures for accelerated catalysis. J Mater Chem A 2:7088–7098

    Article  CAS  Google Scholar 

  15. Cerbelaud M, Ferrando R, Barcaro G, Fortunelli A (2011) Optimization of chemical ordering in AgAu nanoalloys. Phys Chem Chem Phys 13:10232–10240

    Article  CAS  PubMed  Google Scholar 

  16. Qi WH, Lee ST (2010) Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles. J Phys Chem C 114:9580–9587

    Article  CAS  Google Scholar 

  17. Akbarzadeh H, Abbaspour M, Salemi S (2016) Carbon monoxide adsorption on the single-walled carbon nanotube supported gold–silver nanoalloys. New J Chem 40:310–319

    Article  CAS  Google Scholar 

  18. Deng L, Hu W, Deng H, Xiao S, Tang J (2011) Au-Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J Phys Chem C 115:11355–11363

    Article  CAS  Google Scholar 

  19. Chang L, Fisher A, Liu Z, Cheng D (2016) A density functional theory study of sulfur adsorption on Ag–Au nanoalloys. Comput Theor Chem 1085:66–74

    Article  CAS  Google Scholar 

  20. Akbarzadeh H, Abbaspour M (2016) Investigation of melting and freezing of Ag–Au alloy nanoclusters supported on carbon nanotube using molecular dynamics simulations. J Mol Liq 216:671–682

    Article  CAS  Google Scholar 

  21. Chen F, Johnston RL (2008) Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties. Acta Mater 56:2374–2380

    Article  CAS  Google Scholar 

  22. Gomes JF, Garcia AC, Pires C et al (2014) Impact of the AuAg NPs composition on their structure and properties: a theoretical and experimental investigation. J Phys Chem C 118:28868–28875

    Article  CAS  Google Scholar 

  23. Heinz H, Vaia RA, Farmer BL, Naik RR (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J Phys Chem C 112:17281–17290

    Article  CAS  Google Scholar 

  24. Giri AK, Spohr E (2018) Influence of chain length and branching on the structure of functionalized gold nanoparticles. J Phys Chem C 122:26739–26747

    Article  CAS  Google Scholar 

  25. Gupta A, Boekfa B, Sakurai H et al (2016) Structure, interaction, and dynamics of Au/Pd bimetallic nanoalloys dispersed in aqueous ethylpyrrolidone, monomeric moiety of polyvinylpyrrolidone. J Phys Chem C 120:17454–17464

    Article  CAS  Google Scholar 

  26. Khavani M, Izadyar M, Housaindokht MR (2018) Modeling of the functionalized gold nanoparticle aggregation in the presence of dopamine: a joint MD/QM study. J Phys Chem C 122:26130–26141

    Article  CAS  Google Scholar 

  27. Kyrychenko A, Korsun OM, Gubin II et al (2015) Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: effect of oligomer chain length. J Phys Chem C 119:7888–7899

    Article  CAS  Google Scholar 

  28. Yoneya M, Sugisawa S (2019) Simulation of colloidal silver nanoparticle formation from a precursor complex. J Phys Chem C 123:11257–11263

    Article  CAS  Google Scholar 

  29. Kyrychenko A, Pasko DA, Kalugin ON (2017) Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: the role of polymer size and structure. Phys Chem Chem Phys 19:8742–8756

    Article  CAS  PubMed  Google Scholar 

  30. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  32. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  33. Kittel C (1996) Introduction to solid state physics, 8th edn. John Wiley & Sons, New York

    Google Scholar 

  34. Yan Z, Taylor MG, Mascareno A, Mpourmpakis G (2018) Size-, shape-, and composition-dependent model for metal nanoparticle stability prediction. J Phys Chem C 112:17281–17290

    Google Scholar 

  35. Yang CC, Li S (2009) Cohesive energy: the intrinsic dominant of thermal stability and structural evolution in Sn from size scales of bulk to dimer. J Phys Chem C 113:14207–14212

    Article  CAS  Google Scholar 

  36. Liu HB, Pal U, Ascencio JA (2008) Thermodynamic stability and melting mechanism of bimetallic Au-Pt nanoparticles. J Phys Chem C 112:19173–19177

    Article  CAS  Google Scholar 

  37. Elemike EE, Onwudiwe DC, Fayemi OE, Botha TL (2019) Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl Phys A 125:42

    Article  Google Scholar 

  38. Shibata T, Bunker BA, Zhang Z et al (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124:11989–11996

    Article  CAS  PubMed  Google Scholar 

  39. Blazhynska M, Kyrychenko A, Kalugin ON (2018) Molecular dynamics simulation of the size-dependent morphological stability of cubic shape. Mol Simul 44:981–991

    Article  CAS  Google Scholar 

  40. Leitner J, Vonka P, Sedmidubsky D (2010) Svoboda P (2010) Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta 497:7–13

    Article  CAS  Google Scholar 

  41. Gowdini E, Ahmad A, Mabudi A et al (2020) A molecular dynamics study on the thermal properties of carbon-based gold nanoparticles. J Mol Model 26:307

    Article  CAS  PubMed  Google Scholar 

  42. Ju SP (2005) A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle. J Chem Phys 122:094718

    Article  PubMed  Google Scholar 

  43. Yang AC, Weng CI (2010) Structural and dynamic properties of water near monolayer-protected gold clusters with various alkanethiol tail groups. J Phys Chem C 114:8697–8709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Meena Devi and G. Jayabalaji express their sincere thanks to SERB Fast Track Project (SR/FTP/PS-214/2012), New Delhi, India, for the financial support and they acknowledge the DST-FIST Project (SR/FST/PS-1/2020/135) for the facilities. All the simulations were carried out in High Performance Computing Cluster at SASTRA Deemed University, Thanjavur, Tamilnadu, India. J. Meena Devi acknowledges the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, for providing her Regular Associate award for the period of 01 Jan 2019 to 31 Dec 2024. J. Meena Devi express her sincere thanks to Dr. Sandro Scandolo, Dr. Hasan Ali, Condensed Matter Statistical Physics (CMSP) section of the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, for their valuable suggestions. Rajapandian Varatharaj expresses his thanks to the Department of Science and Technology (DST)-INSPIRE Faculty Award (DST/INSPIRE/04/2016/000131 (IFA-16-CH-233)), New Delhi, India, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the manuscript.

G. Jayabalaji: methodology, formal analysis, data curation, writing—original draft.

Rajapandian Varatharaj: investigation, interpretation of results, writing—review and editing.

J. Meena Devi: supervision; formal analysis; writing—original draft; writing—review and editing.

Corresponding author

Correspondence to Meena Devi J.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G, J., Varatharaj, R. & J, M.D. Influence of elemental composition on structural, thermal and hydration behavior of gold-silver bimetallic nanoparticles. J Mol Model 28, 53 (2022). https://doi.org/10.1007/s00894-022-05025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05025-x

Keywords

Navigation