Skip to main content

Advertisement

Log in

Carbon-hydrogen bond activation in bridging cyclobutadiene ligands in unsaturated binuclear vanadium carbonyl derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and energetics of the binuclear cyclobutadiene vanadium carbonyls (C4H4)2V2(CO)n (n = 8, 7, 6, 5, 4, 3, 2) have been investigated by density functional theory (DFT). The lowest energy (C4H4)2V2(CO)8 structure consists of two C4H4V(CO)4 units linked by a V-V single bond of length 3.4 Å. The two lowest energy (C4H4)2V2(CO)7 structures also have formal V-V single bonds. The “extra” two electrons to give each vanadium atom in these heptacarbonyls the favored 18-electron configuration can come from either an agostic C-H-V interaction activating a hydrogen atom from one of the cyclobutadiene rings or from a four-electron donor bridging η2-µ-CO group with a short V–O distance. The lowest energy (C4H4)2V2(CO)6 structure has a formal V≡V triple bond of length 2.52 Å similar to the V≡V triple bond of length 2.46 Å found in the experimentally known cyclopentadienyl derivative (η5-C5H5)2V2(CO)5. The lowest energy structures for the more highly unsaturated (C4H4)2V2(CO)n (n = 5, 4, 3, 2) have at least two four-electron donor bridging η2-µ-CO groups and a vanadium-vanadium bond order sufficient to give each vanadium atom at least a 16-electron configuration.

Graphical abstract

The structures and energetics of the binuclear cyclobutadiene vanadium carbonyls (C4H4)2V2(CO)n (n = 8, 7, 6, 5, 4, 3, 2) have been investigated by density functional theory. The two lowest energy (C4H4)2V2(CO)7 structures include one with an agostic C-H-V interaction activating a hydrogen atom from one of the cyclobutadiene rings and another with a four-electron donor bridging η2-µ-CO group with a short V–O bonding distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The atomic coordinates, total energies, HOMO–LUMO gaps, and the harmonic vibrational frequencies for all optimized structures are available in the Supporting Information.

Code availability

Commercially available Gaussian programs were used for the calculations as indicated; no custom codes were developed or used.

References

  1. Efraty A (1977) Chem Revs 77:691

    Article  CAS  Google Scholar 

  2. Watts JS, Pettit R (1970) Chem Commun 1419

  3. Hübel W, Braye EH, Clauss A, Weiss E, Krüerke U, Brown DA, King GSD, Hoogzand C (1959) J Inorg Nucl Chem 9:304

    Article  Google Scholar 

  4. Dodge RP, Schomaker V (1960) Nature (London) 186:798

    Article  CAS  Google Scholar 

  5. Emerson GF, Watts L, Pettit R (1965) J Am Chem Soc 87:131

    Article  CAS  Google Scholar 

  6. Rosenblum M, Gatsonis C (1967) J Am Chem Soc 89:5074

    Article  CAS  Google Scholar 

  7. Fischler I, Hildenbrand K, von Gustorf EK (1975) Angew Chem 87:35

    Article  CAS  Google Scholar 

  8. Cook MR, Härter P, Pauson PL, Cook JJ, Härter MR, Pauson P, Šraga PLJ (1987) J Chem Soc Dalton 2757

  9. Amiet RG, Pettit R (1968) J Am Chem Soc 90:1059

    Article  CAS  Google Scholar 

  10. Riley PE, Davis RE (1977) J Organometal Chem 137:91

    Article  CAS  Google Scholar 

  11. Criegee R, Schroeder G (1959) Liebigs Ann 623:1

    Article  CAS  Google Scholar 

  12. Wang H, Sun Z, Xie Y, King RB, Schaefer HF (2010) New J Chem 34:1885

    Article  CAS  Google Scholar 

  13. Wang H, Xie Y, King RB, Schaefer HF (2007) Organometallics 26:1393

    Article  CAS  Google Scholar 

  14. Wang H, Xie Y, King RB, Schaefer HF (2008) Organometallics 27:3113

    Article  CAS  Google Scholar 

  15. Chen X, Du Q, Jia R, Feng H, Xie Y, King RB (2014) Polyhedron 73:146

    Article  CAS  Google Scholar 

  16. Chen W, Wan X, Xie S, Chen X, Jin R, Du RQ, Xie Y, King RB (2020) J Organometal Chem 921:article 121347

    Article  Google Scholar 

  17. Wan X, Wang X, Chen X, Jin R, Du Q, Xie Y, King RB (2019) Inorg Chim Acta article 119123

  18. Natta G, Ercoli R, Calderazzo F, Alberola A, Corradini P, Allegra G (1959) Rend Accad Naz Lincei 27:107

    CAS  Google Scholar 

  19. Schmiding DG (1975) J Mol Struct 24:1

    Article  Google Scholar 

  20. Bellard S, Rubinson KA, Sheldrick GM (1979) Acta Cryst B35:271

    Article  CAS  Google Scholar 

  21. Chen W, Li J, Chen X, Jin R, Du Q, Xie Y, King RB (2021) Inorg Chim Acta 219:paper 120249

    Article  Google Scholar 

  22. Ziegler T, Autschbach J (2005) Chem Rev 105:2695

    Article  CAS  PubMed  Google Scholar 

  23. Bühl M, Kabrede H (2006) J Chem Theory Comput 2:1282

    Article  PubMed  Google Scholar 

  24. Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804

    Article  CAS  Google Scholar 

  25. Sieffert N, Bühl M (2010) J Am Chem Soc 132:8056

    Article  CAS  PubMed  Google Scholar 

  26. Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977

    Article  CAS  PubMed  Google Scholar 

  27. Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133:12994

    Article  CAS  PubMed  Google Scholar 

  28. Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133:15464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  PubMed  Google Scholar 

  30. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  31. Perdew JP (1986) Phys Rev B 33:8822

    Article  CAS  Google Scholar 

  32. Jones V, Thiel W (1995) J Phys Chem 102:8474

    Article  Google Scholar 

  33. Silaghi-Dumitrescu I, Bitterwolf TE, King RB (2006) J Am Chem Soc 128:5432

    Article  Google Scholar 

  34. Assef MK, Dever JL, Brathwaite AD, Mosley JD, Duncan MA (2015) Chem Phys Lett 640:175

    Article  Google Scholar 

  35. Narendrapurapu BS, Richardson NA, Copan AV, Estep ML, Yang Z, Schaefer HF (2013) J Chem Theory Comput 9:2930

    Article  CAS  PubMed  Google Scholar 

  36. Dunning TH (1970) J Chem Phys 53:2823

    Article  CAS  Google Scholar 

  37. Huzinaga S (1965) J Chem Phys 42:1293

    Article  Google Scholar 

  38. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  39. Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705

    Article  CAS  Google Scholar 

  40. Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  41. Papas BN, Schaefer HF (2006) J Mol Struct (THEOCHEM) 768:175

    Article  CAS  Google Scholar 

  42. Cotton FA, Kruczynski L (1978) J Organomet Chem 160:93

    Article  CAS  Google Scholar 

  43. Huffman JC, Lewis LN, Caulton KG (1980) Inorg Chem 19:2755

    Article  CAS  Google Scholar 

  44. Caspar JV, Meyer TJ (1980) J Am Chem Soc 102:7794

    Article  CAS  Google Scholar 

  45. Hooker RH, Mahmoud KA, Rest AJ (1983) Chem Commun 1022

  46. Hepp AF, Blaha JP, Lewis C, Wrighton MS (1984) Organometallics 3:174

    Article  CAS  Google Scholar 

  47. Blaha JP, Bursten BE, Dewan JC, Frankel RB, Randolph CL, Wilson BA, Wrighton MS (1985) J Am Chem Soc 107:4561

    Article  CAS  Google Scholar 

  48. Sunderlin LS, Wange D, Squires PR (1993) J Am Chem Soc 115:12060

    Article  CAS  Google Scholar 

  49. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond order donor-acceptor perspective. Cambridge University Press, Cambridge, pp 32–36

    Google Scholar 

  50. Wang H, Xie Y, King RB, Schaefer HF (2006) J Am Chem Soc 128:11376

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are indebted to the New Century Excellent Talents in University (Grant No, NCET-10–0949), the Scientific Research Fund of the Key Laboratory of the Education Department of Sichuan Province in China (Grant No. 10ZX012), and the Innovation Fund of Postgraduate, Xihua University (Grant No. ycjj2019099 for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Chen or R. Bruce King.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 473 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Liu, Q., Chen, W. et al. Carbon-hydrogen bond activation in bridging cyclobutadiene ligands in unsaturated binuclear vanadium carbonyl derivatives. J Mol Model 28, 39 (2022). https://doi.org/10.1007/s00894-021-05009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05009-3

Keywords

Navigation