Skip to main content
Log in

First-principles studies on two-dimensional B3O3 adsorbent as a potential drug delivery platform for TEPA anticancer drug

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The remarkable properties of pristine B3O3 nanosheet as a nanocarrier for adsorption and desorption of TEPA anticancer drug for designing potential drug delivery platform were investigated using periodic DFT calculations. We studied the adsorption energy of all stable complexes formed between the drug molecule and B3O3 in gas and aqueous phases along with electronic structure analysis of complexes. Different adsorption configurations were studied for drug/B3O3 complexes, including the interaction of the C atom of the triangular ring, O atom in the TEPA drug with the B atom in B3O3, and indirect drug interaction the middle of the R1 ring cavity of the B3O3 nanosheet. The take-up of TEPA prompts a substantial change of 68.13% in the band gap (Eg) of the B3O3 nanosheet in the most stable complex. The present study results affirmed the application of B3O3 nanosheet as a potential vehicle for TEPA drugs in the treatment of cancerous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mahmoud WH, Sayed FN, Mohamed GG (2016) Synthesis, characterization and in vitro antimicrobial and anti-breast cancer activity studies of metal complexes of novel pentadentate azo dye ligand. Appl Organomet Chem 30(11):959–973

    Article  CAS  Google Scholar 

  2. Rehmann FJK, Cuffe LP, Mendoza O, Rai DK, Sweeney N, Strohfeldt K et al (2005) Heteroaryl substituted ansa-titanocene anti-cancer drugs derived from fulvenes and titanium dichloride. Appl Organomet Chem 19(3):293–300

    Article  CAS  Google Scholar 

  3. Alavi-Tabari SA, Khalilzadeh MA, Karimi-Maleh H, Zareyee D (2018) An amplified platform nanostructure sensor for the analysis of epirubicin in the presence of topotecan as two important chemotherapy drugs for breast cancer therapy. New J Chem 42(5):3828–3832

    Article  CAS  Google Scholar 

  4. Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D et al (2012) Targeted intracellular delivery of antituberculosis drugs to mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 56(5):2535–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257

    Article  CAS  PubMed  Google Scholar 

  6. Raissi H, Mollania F (2014) Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6, 0) carbon and boron nitride nanotubes as controlled drug delivery devices. Eur J Pharm Sci 56:37–54

    Article  CAS  PubMed  Google Scholar 

  7. Blanco E, Bey EA, Dong Y, Weinberg BD, Sutton DM, Boothman DA et al (2007) β-Lapachone-containing PEG–PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release 122(3):365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng XT, Li CM (2012) Restoring basal planes of graphene oxides for highly efficient loading and delivery of β-lapachone. Mol Pharm 9(3):615–621

    Article  CAS  PubMed  Google Scholar 

  9. Ai S, Duan J, Liu X, Bock S, Tian Y, Huang Z (2011) Biological evaluation of a novel doxorubicin− peptide conjugate for targeted delivery to EGF receptor-overexpressing tumor cells. Mol Pharm 8(2):375–386

    Article  CAS  PubMed  Google Scholar 

  10. Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C-X, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4(5):631–651

    Article  CAS  PubMed  Google Scholar 

  11. Platt VM, Szoka FC Jr (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5(4):474–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tai W, Shukla RS, Qin B, Li B, Cheng K (2011) Development of a peptide–drug conjugate for prostate cancer therapy. Mol Pharm 8(3):901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasongkla N, Wiedmann AF, Bruening A, Beman M, Ray D, Bornmann WG et al (2003) Enhancement of solubility and bioavailability of β-lapachone using cyclodextrin inclusion complexes. Pharm Res 20(10):1626–1633

    Article  CAS  PubMed  Google Scholar 

  14. Langer R (2001) Drugs on target. Science 293(5527):58–59

    Article  CAS  PubMed  Google Scholar 

  15. Mainardes RM, Silva LP (2004) Drug delivery systems: past, present, and future. Curr Drug Targets 5(5):449–455

    Article  CAS  PubMed  Google Scholar 

  16. Sugiura K, Stock CC, Sugiura M (1955) The effect of phosphoramides on the growth of a variety of mouse and rat tumors. Cancer Res 15(1):38

    CAS  PubMed  Google Scholar 

  17. Craig A, Jackson H (1955) The metabolism of 32P-labelled triethylenephosphoramide in relation to its anti-tumour activity. Br J Pharmacol Chemother 10(3):321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lemke TL, Williams DA. Foye’s principles of medicinal chemistry. Lippincott Williams & Wilkins; 2012.

  19. Chang T, Chen G, Waxman DJ (1995) Modulation of thiotepa antitumor activity in vivo by alteration of liver cytochrome P450-catalyzed drug metabolism. J Pharmacol Exp Ther 274(1):270–275

    CAS  PubMed  Google Scholar 

  20. Ng S-f, Waxman DJ (1990) Biotransformation of N, N’, N “-triethylenethiophosphoramide: oxidative desulfuration to yield N, N’, N “-triethylenephosphoramide associated with suicide inactivation of a phenobarbital-inducible hepatic P-450 monooxygenase. Cancer research. 50(3):464–71

    CAS  PubMed  Google Scholar 

  21. Hoseininezhad-Namin MS, Pargolghasemi P, Saadi M, Taghartapeh MR, Abdolahi N, Soltani A et al (2020) Ab initio study of TEPA adsorption on pristine, Al and Si doped carbon and boron nitride nanotubes. J Inorg Organomet Polym Mater 30(11):4297–4310

    Article  CAS  Google Scholar 

  22. Rahman H, Hossain MR, Ferdous T (2020) The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J Mol Liq 320:114427

  23. Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615

    Article  CAS  PubMed  Google Scholar 

  24. Mollania F, Raissi H (2017) Evaluation of solvent and ion effects upon leflunomide adsorption characteristics on (6, 0) zigzag single-walled carbon nanotube and immobilized dihydroorotate dehydrogenase activity: a computational DFT and experimental study. J Mol Liq 231:528–541

    Article  CAS  Google Scholar 

  25. Shahabi M, Raissi H (2017) Investigation of the solvent effect, molecular structure, electronic properties and adsorption mechanism of Tegafur anticancer drug on graphene nanosheet surface as drug delivery system by molecular dynamics simulation and density functional approach. J Incl Phenom Macrocycl Chem 88(3):159–169

    Article  CAS  Google Scholar 

  26. Hazrati MK, Bagheri Z, Bodaghi A (2017) Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies. Physica E 89:72–76

    Article  CAS  Google Scholar 

  27. Guo T, Wu J, Gao H, Chen Y (2017) Covalent functionalization of multi-walled carbon nanotubes with spiropyran for high solubility both in water and in non-aqueous solvents. Inorg Chem Commun 83:31–35

    Article  CAS  Google Scholar 

  28. Freitas R, Gueorguiev GK, de Brito MF, De Castilho C, Stafström S, Kakanakova-Georgieva A (2013) Reactivity of adducts relevant to the deposition of hexagonal BN from first-principles calculations. Chem Phys Lett 583:119–124

    Article  CAS  Google Scholar 

  29. Peyghan AA, Moradi M (2014) Influence of antisite defect upon decomposition of nitrous oxide over graphene-analogue SiC. Thin Solid Films 552:111–115

    Article  CAS  Google Scholar 

  30. Zeng X-S, Chen Y, Deng X-F, Li X, Xu H-L, Yang Q et al (2016) Two porous coordination polymers containing helix-based metal-organic nanotubes based on trigonal N-donor ligand. Inorg Chem Commun 72:65–68

    Article  CAS  Google Scholar 

  31. Dos Santos RB, de BritoMota F, Rivelino R, Kakanakova-Georgieva A, Gueorguiev GK (2016) Van der Waals stacks of few layer h A1N with graphene an ab initio study of structural interaction and electronic properties. Nanotechnol 27(14):145601

    Article  Google Scholar 

  32. Kang Z, Xue M, Zhang D, Fan L, Pan Y, Qiu S (2015) Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorg Chem Commun 58:79–83

  33. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattices Microstruct 100:350–357

    Article  CAS  Google Scholar 

  34. Hosseinian A, Bekhradnia A, Vessally E, Edjlali L, Esrafili M (2017) A DFT study on the central-ring doped HBC nanographenes. J Mol Graph Model 73:101–107

    Article  CAS  PubMed  Google Scholar 

  35. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X et al (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212

    Article  CAS  Google Scholar 

  36. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide. small. 2011;7(4):460-4

  37. Srimathi U, Nagarajan V, Chandiramouli R (2019) Investigation on graphdiyne nanosheet in adsorption of sorafenib and regorafenib drugs: a DFT approach. J Mol Liq 277:776–785

    Article  CAS  Google Scholar 

  38. Shahabi M, Raissi H (2018) Screening of the structural, topological, and electronic properties of the functionalized graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method. J Biomol Struct Dyn 36(10):2517–2529

    Article  CAS  PubMed  Google Scholar 

  39. Vatanparast M, Shariatinia Z (2019) Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: insights from DFT calculations and molecular dynamics simulations. J Mol Graph Model 89:50–59

    Article  CAS  PubMed  Google Scholar 

  40. Tariq A, Nazir S, Arshad AW, Nawaz F, Ayub K, Iqbal J (2019) DFT study of the therapeutic potential of phosphorene as a new drug-delivery system to treat cancer. RSC Adv 9(42):24325–24332

    Article  CAS  Google Scholar 

  41. Gao J, Guo C, Wang X, Zhang W, Wang Y, Vahabi V (2020) Porphyrin-like porous nanomaterials as drug delivery systems for ibuprofen drug. Mol Phys. 118(12):e1678776

    Article  Google Scholar 

  42. Duverger E, Bentin J, Delabrousse E, Gharbi T, Picaud F (2017) Ab initio study of azomethine derivative cancer drug on boron nitride and graphene nanoflakes. J Nanotechnol Nanomed Nanobiotechnol 4:1–6

    Article  Google Scholar 

  43. Aslanzadeh SA (2019) Adsorption of mercaptopurine drug on the BN nanotube, nanosheet and nanocluster: a density functional theory study. Mol Phys 117(5):531–538

    Article  CAS  Google Scholar 

  44. Chen X, Sun Z, Zhang H, Onsori S (2020) Effect of metal atoms on the electronic properties of metal oxide nanoclusters for use in drug delivery applications a density functional theory study. Molecular Physics 118(13):e1692150

    Article  Google Scholar 

  45. Bagheri R, Babazadeh M, Vessally E, Es’ haghi M, Bekhradnia A (2018) Si-doped phagraphene as a drug carrier for adrucil anti-cancer drug: DFT studies. Inorg Chem Commu 90:8–14

    Article  CAS  Google Scholar 

  46. Khodadadi Z, Torkian L (2019) Studying metal-doped graphene nanosheet as a drug β-carrier for anticancer drug lapachone using density functional theory (DFT). Mater Res Exp 6(6):065058

    Article  CAS  Google Scholar 

  47. Hashemzadeh H, Raissi H (2020) Understanding loading, diffusion and releasing of doxorubicin and paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems. Applied Surface Science. 500:144220

    Article  CAS  Google Scholar 

  48. Shahabi M, Raissi H (2019) Theoretical investigation insights into the temperature triggered tegafur anticancer drug release from the surface of graphene oxide nanosheet. J Biomol Struct Dyn 38(8):2287–2295

  49. Rahimi R, Solimannejad M (2020) BC3 graphene-like monolayer as a drug delivery system for nitrosourea anticancer drug: a first-principles perception. Applied Surface Science 525:146577

    Article  CAS  Google Scholar 

  50. Rahimi R, Solimannejad M (2021) First-principles survey on the pristine BC2N monolayer as a promising vehicle for delivery of β lapachone anticancer drug. J Mol Liquids 321:114917

    Article  CAS  Google Scholar 

  51. Stredansky M, Sala A, Fontanot T, Costantini R, Africh C, Comelli G et al (2018) On-surface synthesis of a 2D boroxine framework: a route to a novel 2D material? Chem Commun 54(32):3971–3973

    Article  CAS  Google Scholar 

  52. Lin S, Gu J, Zhang H, Wang Y, Chen Z (2018) Porous hexagonal boron oxide monolayer with robust wide band gap: a computational study. FlatChem 9:27–32

    Article  CAS  Google Scholar 

  53. Rahimi R, Solimannejad M (2021) B3O3 monolayer: an emerging material for CO2 capture. New J Chem 45(34):15328–15335

    Article  CAS  Google Scholar 

  54. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517

    Article  CAS  Google Scholar 

  55. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100(15):6107–6110

    Article  CAS  Google Scholar 

  56. Delley B (2000) From molecules to solids with the DMol 3 approach. J Chem Phys 113(18):7756–7764

    Article  CAS  Google Scholar 

  57. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671

    Article  CAS  Google Scholar 

  58. Zhang H, Li W-X (2009) First-principles investigation of surface and subsurface H adsorption on Ir (111). J Phys Chem C 113(51):21361–21367

    Article  CAS  Google Scholar 

  59. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  60. Kim E, Weck PF, Berber S, Tománek D (2008) Mechanism of fullerene hydrogenation by polyamines ab initio density functional calculations. Physical Review B. 78(11):113404

    Article  Google Scholar 

  61. Rahimi R, Solimannejad M (2021) High-performance hydrogen storage properties of Li-decorated B2N2 nanosheets: a periodic density functional theory study. Energy Fuels 35(8):6858–6867

    Article  CAS  Google Scholar 

  62. Rahimi R, Solimannejad M (2021) Periodic DFT insights into hydrogen storage of a B4CN3 nanosheet. New J Chem 45(5):2463–2469

    Article  CAS  Google Scholar 

  63. Rahimi R, Solimannejad M, Chaudhari A (2021) Pristine B3CN4 monolayer for hydrogen storage a first-principles approach. Phys Lett A. 391:127116

    Article  CAS  Google Scholar 

  64. Rahimi R, Solimannejad M, Chaudhari A (2021) Toxic volatile organic compounds sensing by Al2C monolayer a first-principles outlook. J Hazard Materials 403:123600

    Article  CAS  Google Scholar 

  65. Rahimi R, Solimannejad M (2021) Hydrogen storage on pristine and Li-decorated BC6N monolayer from first-principles insights. Molecular Physics. 119(5):e1827177

    Article  Google Scholar 

  66. Rahimi R, Solimannejad M (2021) Li-decorated Al2C monolayer as a potential template for hydrogen storage: a first-principles perspective. Int J Quantum Chem 121(6):e26528

    Article  CAS  Google Scholar 

  67. Rahimi R, Solimannejad M (2020) First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer. Int J Hydrogen Energy 45(38):19465–19478

    Article  CAS  Google Scholar 

  68. Pack JD, Monkhorst HJ (1977) “ Special points for Brillouin-zone integrations”—a reply. Phys Rev B 16(4):1748

    Article  Google Scholar 

  69. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of chemical physics. 125(22):224106

    Article  PubMed  Google Scholar 

  70. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K et al (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials 220(5–6):567–70

    Article  CAS  Google Scholar 

  71. Ghambarian M, Azizi Z, Ghashghaee M (2020) Remarkable improvement in phosgene detection with a defect-engineered phosphorene sensor: first-principles calculations. Phys Chem Chem Phys 22(17):9677–9684

    Article  CAS  PubMed  Google Scholar 

  72. Ghashghaee M, Ghambarian M (2020) Highly improved carbon dioxide sensitivity and selectivity of black phosphorene sensor by vacancy doping a quantum chemical perspective. Int JQuantum Chem 120(16):e26265

    CAS  Google Scholar 

  73. Ri M-H, Jang Y-M, Ri U-S, Yu C-J, Kim K-I, Kim S-U (2018) Ab initio investigation of adsorption characteristics of bisphosphonates on hydroxyapatite (001) surface. J Mater Sci 53(6):4252–4261

    Article  CAS  Google Scholar 

  74. Hazrati MK, Javanshir Z, Bagheri Z (2017) B24N24 fullerene as a carrier for 5-fluorouracil anti-cancer drug delivery: DFT studies. J Mol Graph Model 77:17–24

    Article  CAS  PubMed  Google Scholar 

  75. Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A (2014) The chemistry, physiology and pathology of pH in cancer. Philosophical Transact Royal Soc B: Biologic Sci 369(1638):20130099

    Article  Google Scholar 

  76. Song H, Gao J, Wu L (2020) Fluorouracil drug sensing characteristics of pristine and Al-doped BC3 nanosheets: quantum chemical study. Computational and Theoretical Chemistry. 1182:112847

    Article  CAS  Google Scholar 

  77. Ding W, Zhang X, Wu YL, Wu L (2020) Graphene-like boron carbide monolayer as an electronic and work function-type sensor for dopamine drug. J Mol Graph Model 99:107644

    Article  CAS  PubMed  Google Scholar 

  78. Li L, Jiang X, Wang H, Wu H, Lv J, Jameh-Bozorghi S (2020) A new type of heteroborospherene as a versatile carrier for drug delivery: a theoretical study. Physica E: Low-dimensional Systems and Nanostructures 117:113852

    Article  CAS  Google Scholar 

  79. Vatanparast M, Shariatinia Z (2019) Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: a combined density functional theory and molecular dynamics approach. J Mater Chem B 7(40):6156–6171

    Article  CAS  PubMed  Google Scholar 

  80. Lotfi M, Morsali A, Bozorgmehr MR (2018) Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl Surf Sci 462:720–729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rezvan Rahimi: Conceptualization, software.

Mohammad Solimannejad: Supervision, Writing—original draft.

Zeynab Ehsanfar: Writing—review and editing.

Corresponding author

Correspondence to Mohammad Solimannejad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, R., Solimannejad, M. & Ehsanfar, Z. First-principles studies on two-dimensional B3O3 adsorbent as a potential drug delivery platform for TEPA anticancer drug. J Mol Model 27, 347 (2021). https://doi.org/10.1007/s00894-021-04930-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04930-x

Keywords

Navigation