Skip to main content
Log in

Comparative studies of C7H10N2 pyridine and C7H10N2S pyrrole for optoelectronic applications by mBJ approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The modified Becke-Johnson exchange (mBJ) potential plus the generalized gradient approximation (GGA) correlation are used for the calculation of the optoelectronic properties of the C7H10N2 pyridine and C7H10N2S pyrrole. Electronic band gaps of C7H10N2 pyridine and C7H10N2S pyrrole have been determined to be 4.65 eV and 3.41 eV by band structure spectra, respectively. According to the Penn model, there is an inverse relationship between the band gap value and static dielectric constant along the x-direction. The density of states spectra shows that the p state of S atoms plays a key role in the optical spectra. In the refractive index spectra, the nature of materials changes from linear to nonlinear with superluminal nature in a narrow energy range of 3.9–4.7 eV for C7H10N2S and 5–7.7 eV for C7H10N2. Cauchy parameters are calculated and predicted values are extended in the UV (ultraviolet) and visible regions. Obtained plasmon energies are in close agreement with suitable optical materials such as α-Al2O3 making the material more effective to use in new optical devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

WIEN2k software.

References

  1. Höfle G, Steglich W, Vorbrüggen H (1978) 4-Dialkylaminopyridine als hochwirksame Acylierungskatalysatoren. Angew Chem Int Ed Engl 90:602–615

    Article  Google Scholar 

  2. Krolikowska M, Garbarczyk J (1992) Crystal structure of N-methyl-2-(Nmethylthioamide)-pyrrol, C7H10N2S. Z Kristallogr 198:315–317

    Article  CAS  Google Scholar 

  3. Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P (2015) Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. R S C Adv 5:15233–15266

    CAS  Google Scholar 

  4. Dannhardt G, Steindl L, Lehr M. (1993) Substituted pyrrole compounds and use thereof in pharmaceutical compositions, US Patent 5: 451

  5. Bourzat JD, Capet M, Cotrel C, Labaudiniere R, Pitchen P, G, (1990) Roussel Pyrrole derivatives, and pharmaceutical compositions which contain them and pharmacological methods of use. US Patent 4:779

    Google Scholar 

  6. DL Comins (1997) Chapter 6.1 Six-membered ring systems: pyridine and benzo derivatives, progress in heterocyclic chemistry 9: 22–248

  7. Hamada Y (2018) Role of pyridines in medicinal chemistry and design of BACE1 inhibitors possessing a pyridine scaffold. INTECH. https://doi.org/10.5772/intechopen.74719

    Article  Google Scholar 

  8. Tomishima M, Take K (2003) Pyridine compounds and their pharmaceutical use. US Patent 6:643

    Google Scholar 

  9. Oe T, Ono Y, Kawasaki K, Nakajima T (1991) Pyridine compounds and pharmaceutical use thereof. US Patent 5:137

    Google Scholar 

  10. Anwar, Ayaz, Sadia Khalid, Samina Perveen, Shakil Ahmed, Ruqaiyyah Siddiqui, Naveed Ahmed Khan, and Muhammad Raza Shah. "Synthesis of 4-(dimethylamino) pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity." Journal of nanobiotechnology 16, no. 1 (2018): 1–8.

  11. Shtamburg VG, Tsygankov AV, Shishkin OV, Zubatyuk RI, Shtamburg VV, Gerasimenko MV, Mazepa AV, Kostyanovsky RG (2012) 1-Alkoxyamino-4-dimethylaminopyridinium derivatives as new representatives of O-N–N+ geminal systems and their structure. Mendeleev Commun 22(2):92–94

    Article  CAS  Google Scholar 

  12. Mehring M (2004) Two-and three-dimensional hydrogen-bonded networks built from 1, 3, 5-[(HO) 2 (O) P] 3C6H3 and 4-(dimethylamino) pyridine. Eur J Inorg Chem 2004(16):3240–3246

    Article  Google Scholar 

  13. Blaha, Peter, Karlheinz Schwarz, Fabien Tran, Robert Laskowski, Georg KH Madsen, and Laurence D. Marks. "WIEN2k: an APW+ lo program for calculating the properties of solids." The Journal of Chemical Physics 152, no. 7 (2020): 074101

  14. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange correlation potential. Phys Rev Lett 102:226401

    Article  Google Scholar 

  15. Rahnamaye Aliabad HA, Bazrafshan M, Vaezi H, Yousaf Masood, Munir Junaid, Saeed MA (2013) Optoelectronic properties of pure and Co doped indium oxide by Hubbard and modified Becke-Johnson exchange potentials. Chinese Physics Letters 30(12):127101

    Article  Google Scholar 

  16. Cariati E, Roberto D, Ugo R, Ford PC, Galli S, Sironi A (2005) New structural motifs, unusual quenching of the emission, and second harmonic generation of copper (I) iodide polymeric or oligomeric adducts with p ara-substituted pyridines or trans-stilbazoles. Inorg Chem 44(11):4077–4085

    Article  CAS  Google Scholar 

  17. Muralidharan S, Nagapandiselvi P, Srinivasan T, Gopalakrishnan R, Velmurugan D (2012) 3-Methyl-4-nitrophenol–4-dimethylaminopyridine (1/1). Acta Crystallogr Sect E: Struct Rep Online 68(11):o3106–o3106

    Article  CAS  Google Scholar 

  18. Blochl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223

    Article  CAS  Google Scholar 

  19. Rahnamaye Aliabad HA (2018) Theoretical and experimental studies of La-substituted In2O3 nano-layer via the modified Becke-Johnson (mBJ) potential. Optik 175:268–274

    Article  CAS  Google Scholar 

  20. H. A. Rahnamaye Aliabad, S. M. Hosseini, Ahmad Kompany, A. Youssefi, and E. Attaran Kakhki (2009) Optical properties of pure and transition metal‐doped indium oxide. Physica Status solidi (b) 246 (5): 1072–1081

  21. Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175:1–14

    Article  CAS  Google Scholar 

  22. Bashi M, Rahnamaye Aliabad HA, Maleki B (2019) Comparison between optoelectronic spectra and NMR shielding in tellurium based compounds: a FP-LAPW study. Mater. Res. Express. 6:106314

    Article  CAS  Google Scholar 

  23. Rahnamaye Aliabad HA, Bashi M (2019) Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. J Mater Sci-Mater El. 20:18720–18728

    Article  Google Scholar 

  24. Chen Y-J, Lee C-C, Chen S-H, Flory F (2013) Extra high reflection coating with negative extinction coefficient. Opt Lett 38(17):3377–3379

    Article  Google Scholar 

  25. Ramakrishna SA (2005) Physics of negative refractive index materials. Reports on progress in physics 68(2): 449

  26. Smith NV (1971) Photoelectron energy spectra and the band structures of the noble metals. Phys Rev B 3:1862

    Article  Google Scholar 

  27. Marius G (2010) Kramers-Kronig Relations (The Physics of Semiconductors) (Berlin Heidelberg: Springer) p. 775

  28. Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128:2093–2097

    Article  CAS  Google Scholar 

  29. Fox, M. "Classical propagation." Optical properties of solids, Oxford University Press Inc., New York (2001): 25–48.(MLA)

  30. Boyd, Robert W., and Daniel J. Gauthier. “Slow” and “fast” light. (2002).

  31. Murtaza, G., G. Sadique, H.A. Rahnamaye Aliabad, M. N. Khalid, S. Naeem, A. Afaq, B. Amin, and Iftikhar Ahmad. "First principle study of cubic perovskites: AgTF3 (T= Mg, Zn)." Physica B: Condensed Matter 406, no. 24 (2011): 4584–4589.

  32. Li J, Wu ST (2004) Extended Cauchy equations for the refractive indices of liquid crystals. J Appl Phys 95:895–901

    Google Scholar 

  33. J. Sun, H. T. Wang, J. L. He, Y. J. Tian, Ab initio investigations of optical properties of the high-pressure phases of ZnO, Phys. Rev. B 71 (2005)125132.

  34. S. M. Hosseini, H. A. Rahnamaye Aliabad, and Ahmad Kompany. "First-principles study of the optical properties of pure α-Al2O3 and La aluminates." The European Physical Journal B-Condensed Matter and Complex Systems 43, no. 4 (2005): 439–444.

Download references

Acknowledgements

We thank Prof. P. Blaha from the Vienna University of Technology, Austria, for their help in the use of the WIEN2k package.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. M. Bashi performed the computations by using the WIEN2k software. H. A. Rahnamaye Aliabad supervised the findings of this work and wrote the manuscript. M. Samsami performed formal analysis, writing, reviewing, and editing.

Corresponding author

Correspondence to Hossein Asghar Rahnamaye Aliabad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashi, M., Aliabad, H.A.R. & Samsami, M. Comparative studies of C7H10N2 pyridine and C7H10N2S pyrrole for optoelectronic applications by mBJ approach. J Mol Model 27, 274 (2021). https://doi.org/10.1007/s00894-021-04890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04890-2

Keywords

Navigation