Skip to main content
Log in

Defective GaAs nanoribbon–based biosensor for lung cancer biomarkers: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory-based first-principles investigation is performed on pristine and mono vacancy induced GaAs nanoribbons to detect the presence of three volatile organic compounds (VOCs), aniline, isoprene and o-toluidine, which will aid in sensing lung cancer. The study has shown that pristine nanoribbon senses all three analytes. For the pristine structure, we observe decent adsorbing parameters and the bandgap widens after the adsorption of analytes. However, the introduction of the carrier traps induced by defect causes deep energy wells that vary the electrical properties as indicated in the bandgap analysis of GaAs, wherein adsorption of aniline and o-toluidine reduces the bandgap to 0 eV, making the structure highly conductive in nature. The adsorption energies of defect-induced nanoribbon are more as compared with the pristine counterpart. Nonetheless, the introduction of defects has improved the sensitivity further.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. L. Dominioni, A. Imperatori, F. Rovera, A. Ochetti, G. Torrigiotti, M. Paolucci, Stage I nonsmall cell lung carcinoma, Cancer 89:2334.

  2. Wan Q, Xu Y, Xiao H (2018) Exhaled gas detection by Ir-doped CNT for primary diagnosis of lung cancer. AIP Adv 8:105128. https://doi.org/10.1063/1.5050435

    Article  CAS  Google Scholar 

  3. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas liquid partition chromatography. prOceedings of the National Academy of Sciences 68:2374. https://doi.org/10.1073/pnas.68.10.2374

    Article  CAS  Google Scholar 

  4. Hoa LT, Tien HN, Luan VH, Chung JS, Hur SH (2013) Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens Actuators, B Chem 185:701. https://doi.org/10.1016/j.snb.2013.05.050

    Article  CAS  Google Scholar 

  5. Chen X-P, Wang L-M, Sun X, Meng R-S, Xiao J, Ye H-Y, Zhang G-Q (2017) Sulfur dioxide and nitrogen dioxide gas sensor based on arsenene: a first-principle study. IEEE Electron Device Lett 38:661. https://doi.org/10.1109/led.2017.2684239

    Article  CAS  Google Scholar 

  6. Srimathi U, Nagarajan V, Chandiramouli R (2019) Germanane nanosheet as a novel biosensor for liver cirrhosis based on adsorption of biomarker volatiles – a DFT study. Appl Surf Sci 475:990. https://doi.org/10.1016/j.apsusc.2019.01.008

    Article  CAS  Google Scholar 

  7. Aragay G, Pino F, Merkoçi A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338. https://doi.org/10.1021/cr300020c

    Article  CAS  PubMed  Google Scholar 

  8. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764. https://doi.org/10.1039/c3cs60273g

    Article  CAS  PubMed  Google Scholar 

  9. Demchenko AP, Dekaliuk MO (2013) Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and Applications in Fluorescence 1(4):042001. https://doi.org/10.1088/2050-6120/1/4/042001

    Article  CAS  PubMed  Google Scholar 

  10. Etienne M, Goux A, Sibottier E, Walcarius A (2009) Oriented mesoporous organosilica films on electrode: a new class of nanomaterials for sensing. J Nanosci Nanotechnol 9(4):2398–2406. https://doi.org/10.1166/jnn.2009.se39

    Article  CAS  PubMed  Google Scholar 

  11. Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM-C (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators, B Chem 157:310. https://doi.org/10.1016/j.snb.2011.03.035

    Article  CAS  Google Scholar 

  12. Jeong HY, Lee D-S, Choi HK, Lee DH, Kim J-E, Lee JY, Lee W-J, Kim S-O, Choi S-Y (2010) Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett 96(21):213105. https://doi.org/10.1063/1.3432446

    Article  CAS  Google Scholar 

  13. Zheng Z, Wang H (2019) Different elements doped graphene sensor for CO2 greenhouse gases detection: the DFT study. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2019.02.024

    Article  Google Scholar 

  14. Shokuhi RA, Esfahanian M, Maleki S, Gharati G (2016) Application of carbon nanostructures toward SO2 and SO3adsorption: a comparison between pristine graphene and N doped graphene by DFT calculations. J Sulfur Chem 37(2):176–188. https://doi.org/10.1080/17415993.2015.1116536

    Article  CAS  Google Scholar 

  15. Rad AS, Shabestari SS, Mohseni S, Aghouzi SA (2016) Study on the adsorption properties of O 3, SO 2, and SO 3 on B-doped graphene using DFT calculations. J Solid State Chem 237:204–210. https://doi.org/10.1016/j.jssc.2016.02.023

    Article  CAS  Google Scholar 

  16. Walia GK, Randhawa DKK (2017) Electronic and transport properties of silicene-based ammonia nanosensors: an ab initio study. Struct Chem 29:257. https://doi.org/10.1007/s11224-017-1025-9

    Article  CAS  Google Scholar 

  17. Walia GK, Randhawa DKK (2018) First-principles investigation on defect-induced silicene nanoribbons — a superior media for sensing NH 3, NO 2 and NO gas molecules. Surf Sci 670:33. https://doi.org/10.1016/j.susc.2017.12.013

    Article  CAS  Google Scholar 

  18. Walia, G. K., & Randhawa D. K. K. (2018). Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts. Journal of Molecular Modeling, 24(4).https://doi.org/10.1007/s00894-018-3631-x

  19. Walia GK, Randhawa DKK (2018) Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution. Struct Chem 29:1893. https://doi.org/10.1007/s11224-018-1170-9

    Article  CAS  Google Scholar 

  20. Walia GK, Randhawa DKK (2018) Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons. J Mol Model 24:242. https://doi.org/10.1007/s00894-018-3782-9

    Article  CAS  PubMed  Google Scholar 

  21. Sadeghi H, Bailey S, Lambert CJ (2014) Silicene-based DNA nucleobase sensing. Appl Phys Lett 104(10):103104. https://doi.org/10.1063/1.4868123

    Article  CAS  Google Scholar 

  22. Tarun, T., Randhawa, D. K. K., Singh, P., Choudhary, B. C., Walia, G. K., & Kaur, N. (2020). Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study. Journal of Molecular Modeling, 26(3).https://doi.org/10.1007/s00894-020-4313-z

  23. Singh, P., Randhawa, D. K. K., Tarun, Choudhary, B. C., Walia, G. K., & Kaur, N. (2019). First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors. Journal of Molecular Modeling, 26(1).https://doi.org/10.1007/s00894-019-4243-9

  24. Kou L, Li C, Zhang Z, Guo W (2010) Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields. ACS Nano 4(4):2124–2128. https://doi.org/10.1021/nn901552b

    Article  CAS  PubMed  Google Scholar 

  25. Topsakal, M., Cahangirov, S., Bekaroglu, E., & Ciraci, S. (2009). First-principles study of zinc oxide honeycomb structures. Physical Review B, 80(23).https://doi.org/10.1103/physrevb.80.235119

  26. Xia W, Hu W, Li Z, Yang J (2014) A first-principles study of gas adsorption on germanene. Phys Chem Chem Phys 16:22495. https://doi.org/10.1039/c4cp03292f

    Article  CAS  PubMed  Google Scholar 

  27. Monshi MM, Aghaei SM, Calizo I (2017) Doping and defect-induced germanene: a superior media for sensing H 2 S, SO 2, and CO 2 gas molecules. Surf Sci 665:96. https://doi.org/10.1016/j.susc.2017.08.012

    Article  CAS  Google Scholar 

  28. Nagarajan V, Chandiramouli R (2017) NO 2 adsorption behaviour on germanene nanosheet – a first-principles investigation. Superlattices Microstruct 101:160. https://doi.org/10.1016/j.spmi.2016.11.032

    Article  CAS  Google Scholar 

  29. Nagarajan V, Chandiramouli R (2017) CO and NO monitoring using pristine germanene nanosheets: DFT study. J Mol Liq 234:355. https://doi.org/10.1016/j.molliq.2017.03.100

    Article  CAS  Google Scholar 

  30. Choi S-J, Kim I-D (2018) Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron Mater Lett 14:221. https://doi.org/10.1007/s13391-018-0044-z

    Article  CAS  Google Scholar 

  31. Rozahun I, Bahti T, He G, Ghupur Y, Ablat A, Mamat M (2018) GaAs monolayer: Excellent SHG responses and semi metallic to metallic transition modulated by vacancy effect. Appl Surf Sci 441:401. https://doi.org/10.1016/j.apsusc.2018.02.045

    Article  CAS  Google Scholar 

  32. Volovik BV, Kovsh AR, Passenberg W, Kuenzel H, Grote N, Cherkashin NA, Ustinov VM (2001) Optical and structural properties of self-organized InGaAsN/GaAs nanostructures. Semicond Sci Technol 16(3):186–190. https://doi.org/10.1088/0268-1242/16/3/312

    Article  CAS  Google Scholar 

  33. Liang D, Huo Y, Kang Y, Wang KX, Gu A, Tan M, Yu Z, Li S, Jia J, Bao X, Wang S, Yao Y, Wong HS, Fan S, Cui Y, Harris JS (2012) Optical absorption enhancement in freestanding gaas thin film nanopyramid arrays. Adv Energy Mater 2(10):1254–1260. https://doi.org/10.1002/aenm.201200022

    Article  CAS  Google Scholar 

  34. Rouzhahong, Y., Wushuer, M., Mamat, M., Wang, Q., & Wang, Q. (2020). First principles calculation for photocatalytic activity of GaAs Monolayer. Scientific Reports, 10(1).https://doi.org/10.1038/s41598-020-66575-9

  35. Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R. T., & Ciraci, S. (2009). Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Physical Review B, 80(15).https://doi.org/10.1103/physrevb.80.155453

  36. Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html). Accessed 22 Mar 2021

  37. Wu Y, Farmer DB, Zhu W, Han SJ, Dimitrakopoulos CD, Bol AA, Avouris P, Lin YM (2012) Three-terminal graphene negative differential resistance devices. ACS Nano 6(3):2610–2616. https://doi.org/10.1021/nn205106z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh, India, for permission to use Atomistix Toolkit (ATK) for the calculations.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Gurleen Kaur Walia.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Yes, all are ready to participate.

Consent for publication

Yes, all are ready to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarun, T., Singh, P., Kaur, H. et al. Defective GaAs nanoribbon–based biosensor for lung cancer biomarkers: a DFT study. J Mol Model 27, 270 (2021). https://doi.org/10.1007/s00894-021-04889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04889-9

Keywords

Navigation