Skip to main content
Log in

Energetic and electronic properties of NH3, NO2 and SO2 interacting with GaN nanotube: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the interaction of GaN nanotube (GaNNT) with common air pollutants of industrialized cities, such as NH3, NO2 and SO2 in different configurations was studied. For this study, the single-walled (10,0) GaNNT was used. The analysis was done via the density functional theory implemented in the SIESTA simulation software. The analysis of the results shows that the air pollutants alter the properties of nanotubes when they interact with them. The stability analysis shows that the most stable configurations are those in which adsorption occurs through a chemical process. The systems remain semiconductors, but in the case of NO2 and SO2 molecules interacting with GaNNT, there was a significant reduction in the energy gap. Our results also indicate that GaNNT is a promising material to detect and remove NH3 and NO2 molecules from the environment; however, it may be not applicable to detect or remove SO2, because the latter interacts strongly with the nanotube, which prevents the GaNNT from being reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khan MS, Srivastava A (2016) . J Electroanal Chem 775:243

    Article  CAS  Google Scholar 

  2. Jiang R, Guo W, Li M, Zhu H, Li J, Zhao L, Fu D, Sham H (2009) . J Phys Chem C 113:18223

    Article  CAS  Google Scholar 

  3. Wu Z, Hahm MG, Jung YJ, Menon L (2009) . J Mater Chem 19:463

    Article  Google Scholar 

  4. Xie Y, Huo Y-P, Zhang J-M (2012) . Appli Surf Sci 258:6391

    Article  CAS  Google Scholar 

  5. Zhao J, Buldum A, Han J, Lu P (2002) . Nanotechnology 13:195

    Article  CAS  Google Scholar 

  6. Baei MT, Soltani AR, Moradi AV, Lemeski ET (2011) . Comput Theor Chem 970:30

    Article  CAS  Google Scholar 

  7. Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu QY (2008) . J Phys Chem C 112:15985

    Article  CAS  Google Scholar 

  8. An W, Wu X, Zeng XC (2008) . J Phys Chem C 112:57647

    Google Scholar 

  9. Lin F, Zhou G, Li Z, Wu J, Duan W (2009) . Chem Phys Lett 475:82

    Article  CAS  Google Scholar 

  10. Ganji MD (2008) . Phys Lett A 372:3277

    Article  CAS  Google Scholar 

  11. Kang SM, Shin TI, Dinh DV, Yang JH, Kim SW, Yoon Dh (2009) . Microelectron J 40:373

    Article  CAS  Google Scholar 

  12. Lee S, Lee YH, Hwang YG, Elsner J, Porezag D, Frauenheim T (1999) . Phys Rev B 60:S253

    Article  Google Scholar 

  13. Lee S, Lee YH, Hwang YG, Lee CJ (1999) . J Korean Phys Soc 34(3):S253–S257

    CAS  Google Scholar 

  14. Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H-J, Yang P (2003) . Nature 422:599

    Article  CAS  Google Scholar 

  15. Colussi ML, Baierle RJ, Miwa RH (2008) . J Appl Phys 104:033712

    Article  Google Scholar 

  16. Khan MS, Srivastava A (2016) . J Electroanaly Chem 775:243

    Article  CAS  Google Scholar 

  17. Frisch MJ, et al. (2009) Gaussian09 revision a, vol 02. Gaussian, Inc., Wallingford

    Google Scholar 

  18. Hohenberg P, Kohn W (1964) . Phy Rev 136:864B

    Article  Google Scholar 

  19. Ordejon P, Soler JM (1996) . Phys Rev B 53:10441

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) . Phys Rev 140:A1133

    Article  Google Scholar 

  21. Troullier N, Martins JL (1991) . Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  22. Kleinman L, Bylander DM (1982) . Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  23. Artacho E, Sachez-Portal D, Ordejon P, Garcia A, Soler JM (1999) . Phys Status Solidi B 215:809

    Article  CAS  Google Scholar 

  24. Monkhorstand HJ, Pack JD (1976) . Phys Rev B 13:5188

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) . Phys Rev B 77:5048

    Google Scholar 

  26. Boys SF, Bernardi F (1970) . Mol Phys 19:553

    Article  CAS  Google Scholar 

  27. Sodré JM, Longo E, Talf CA, Martins JBB, Santos JD (2017) . Compt Rend Chim 20:190

    Article  Google Scholar 

  28. Ribeiro CC, Varela Junior J, Guerini S (2018) . J Mol Model 24:192

    Article  Google Scholar 

  29. Machado FM, Carmalin SA, Lima EC, Dias SLP, Prola LDT, Saucier C, Jauris IM, Zanella I, Fagan SB (2016) . J Phys Chem C 120:18296

    Article  CAS  Google Scholar 

  30. Machado FM, Bergmann CP, Lima EC, Royer B, Souza FE, Jauris IM, Calveted T, Fagan SB (2012) . Phys Chem Chem Phys 14:11139

    Article  CAS  Google Scholar 

  31. Mülliken RS (1955) . J Chem Phys 23:1833

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CENAPAD-SP and LSIM-UFMA for computer times. Andrew A. J. Anchieta da Silva acknowledge to CAPES for the fellowship.

Funding

The authors acknowledge FAPEMA and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvete Guerini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Author contribution

A. J. Anchieta da Silva performed all the calculations presented in this study. All analyzes were performed by Silvete Guerini and A. J. Anchieta da Silva. The first draft of the manuscript was written by Silvete Guerini and Caio Vinícius Caetano. All authors contributed to the study conception and interpretation of results. The writing and revision of the final version of the manuscript were performed by Caio Vinícius Caetano.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.A.J.A., Caetano, C.V. & Guerini, S. Energetic and electronic properties of NH3, NO2 and SO2 interacting with GaN nanotube: a DFT study. J Mol Model 27, 234 (2021). https://doi.org/10.1007/s00894-021-04826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04826-w

Keywords

Navigation