Skip to main content
Log in

Quantifying bond strengths via a Coulombic force model: application to the impact sensitivity of nitrobenzene, nitrogen-rich nitroazole, and non-aromatic nitramine molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The quantification of bond strengths is a useful and general concept in chemistry. In this work, a Coulombic force model based on atomic electric charges computed using the accurate distributed multipole analysis (DMA) partition of the molecular charge density was employed to quantify the weakest N–NO2 and C–NO2 bond strengths of 19 nitrobenzene, 11 nitroazole, and 10 nitramine molecules. These bonds are known as trigger linkages because they are usually related to the initiation of an explosive. The three families of explosives combine different types of molecular properties and structures ranging from essentially aromatic molecules (nitrobenzenes) to others with moderate aromaticity (nitroazoles) and non-aromatic molecules with cyclic and acyclic skeletons (nitramines). We used the results to investigate the impact sensitivity of the corresponding explosives employing the trigger linkage concept. For this purpose, the computed Coulombic bond strength of the trigger linkages was used to build four sensitivity models that lead to an overall good agreement between the predicted values and available experimental sensitivity values even when the model included the three chemical families simultaneously. We discussed the role of the trigger linkages for determining the sensitivity of the explosives and rationalized eventual discrepancies in the models by examining alternative decomposition mechanisms and features of the molecular structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data can be found in the Supporting Information.

References

  1. McWeeny R, Coulson CA (1980) Coulson's Valence. Oxford University Press, Oxford

    Google Scholar 

  2. Cremer D, Wu AN, Larsson A, Kraka E (2000) Some thoughts about bond energies, bond lengths, and force constants. J Mol Model 6(4):396–412

    Article  CAS  Google Scholar 

  3. de Sousa DWO, Nascimento MAC (2017) Are one-electron bonds any different from standard two-electron covalent bonds? Acc Chem Res 50(9):2264–2272

    Article  CAS  PubMed  Google Scholar 

  4. Fantuzzi F, Cardozo TM, Nascimento MAC (2017) On the metastability of doubly charged homonuclear diatomics. Phys Chem Chem Phys 19(29):19352–19359

    Article  CAS  PubMed  Google Scholar 

  5. Bader RFW (1994) Atoms in molecules: a quantum theory. International series of monographs on chemistry, vol 22. Clarendon Press, Oxford

    Google Scholar 

  6. Politzer P, Murray JS (2019) A look at bonds and bonding. Struct Chem 30(4):1153–1157

    Article  CAS  Google Scholar 

  7. Romanova A, Lyssenko K, Ananyev I (2018) Estimations of energy of noncovalent bonding from integrals over interatomic zero-flux surfaces: correlation trends and beyond. J Comput Chem 39(21):1607–1616

    Article  CAS  PubMed  Google Scholar 

  8. Su XF, Cheng XL, Meng CM, Yuan XL (2009) Quantum chemical study on nitroimidazole, polynitroimidazole and their methyl derivatives. J Hazard Mater 161(1):551–558

    Article  CAS  PubMed  Google Scholar 

  9. Turker L, Atalar T (2006) Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J Hazard Mater 137(3):1333–1344

    Article  PubMed  Google Scholar 

  10. Jun Z, Xin-lu C, Bi H, Xiang-dong Y (2006) Neural networks study on the correlation between impact sensitivity and molecular structures for nitramine explosives. Struct Chem 17(5):501–507

    Article  Google Scholar 

  11. Song XS, Cheng XL, Yang XD, Li DH, Linghu RF (2008) Correlation between the bond dissociation energies and impact sensitivities in nitramine and polynitro benzoate molecules with polynitro alkyl groupings. J Hazard Mater 150(2):317–321

    Article  CAS  PubMed  Google Scholar 

  12. Atalar T, Jungova M, Zeman S (2009) A new view of relationships of the N-N bond dissociation energies of cyclic nitramines. Part II. Relationships with Impact Sensitivity. J Energ Mater 27(3):200–216

    Article  CAS  Google Scholar 

  13. Kraka E, Cremer D (2009) Characterization of CF bonds with multiple-bond character: bond lengths, stretching force constants, and bond dissociation energies. ChemPhysChem 10(4):686–698

    Article  CAS  PubMed  Google Scholar 

  14. Sacks LJ (1986) Coulombic models in chemical bonding: 1. Description and some applications of a Coulombic model. J Chem Educ 63(4):288–296

    Article  CAS  Google Scholar 

  15. Sacks LJ (1986) Coulombic models in chemical bonding: 2. Dipole-moments of binay hydrides. J Chem Educ 63(5):373–376

    Article  CAS  Google Scholar 

  16. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  17. Kuklja MM, Stefanovich EV, Kunz AB (2000) An excitonic mechanism of detonation initiation in explosives. J Chem Phys 112(7):3417–3423

    Article  CAS  Google Scholar 

  18. Dippold AA, Klapotke TM (2013) A study of Dinitro-bis-1,2,4-triazole-1,1 '-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J Am Chem Soc 135(26):9931–9938

    Article  CAS  PubMed  Google Scholar 

  19. Klapotke TM, Krumm B, Widera A (2018) Synthesis and properties of Tetranitro-substituted adamantane derivatives. ChemPlusChem 83(1):61–69

    Article  PubMed  Google Scholar 

  20. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305

    Article  CAS  PubMed  Google Scholar 

  21. Trache D, Tarchoun AF (2018) Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci 53(1):100–123

    Article  CAS  Google Scholar 

  22. Sivabalan R, Anniyappan M, Pawar SJ, Talawar MB, Gore GM, Venugopalan S, Gandhe BR (2006) Synthesis, characterization and thermolysis studies on triazole and tetrazole based high nitrogen content high energy materials. J Hazard Mater 137(2):672–680

    Article  CAS  PubMed  Google Scholar 

  23. Nanayakkara S, Kraka E (2019) A new way of studying chemical reactions: a hand-in-hand URVA and QTAIM approach. Phys Chem Chem Phys 21(27):15007–15018

    Article  CAS  PubMed  Google Scholar 

  24. Politzer PM, J. S. (2003) Energetic materials. Part 1. Decomposition, crystal and molecular properties, vol 12. Theoretical and Computational Chemistry. Elsevier, Amsterdan

  25. Politzer PM, J. S. (2003) Energetic materials. Part 2. Detonation, Combustion., vol 13. Theoretical and Computational Chemistry. Elsevier, Amsterdan

  26. Shaw RWB, T. B., Thompson DL (2005) Overviews of recent research on energetic materials, vol 16. Advanced Series in Physical Chemistry, World Scientific, New Jersey

    Google Scholar 

  27. Zeman S, Jungova M (2016) Sensitivity and performance of energetic materials. Propellants Explos Pyrotech 41(3):426–451

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech 41(3):414–425

    Article  CAS  Google Scholar 

  29. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783

    Article  CAS  Google Scholar 

  30. Zeman S (2007) Sensitivities of high energy compounds. High energy density materials, vol 125. Structure and Bonding. Springer-Verlag, Berlin, Berlin, pp 195–271

    Chapter  Google Scholar 

  31. Mathieu D (2013) Toward a physically based quantitative modeling of impact sensitivities. J Phys Chem A 117(10):2253–2259

    Article  CAS  PubMed  Google Scholar 

  32. Mathieu D, Alaime T (2014) Predicting impact sensitivities of nitro compounds on the basis of a semi-empirical rate constant. J Phys Chem A 118(41):9720–9726

    Article  CAS  PubMed  Google Scholar 

  33. Mathieu D (2015) Prediction of gurney parameters based on an analytic description of the expanding products. J Energ Mater 33(2):102–115

    Article  CAS  Google Scholar 

  34. Rae PJ, Dickson PM (2020) Some observations about the drop-weight explosive sensitivity test. J Dyn Behav Mater

  35. Kamlet MJ The relationship of impact sensitivity with structure of organic high explosives. 1. Polynitroaliphatic explosives. In: 6th International Symposium on Detonation, San Diego, California, 1976. ONR Report ACR 221, p 312

  36. Kamlet MJ, Adolph HG (1979) Relationship of impact sensitivity with structure of organic high explosives: . polynitroaromatic explosives. Propellants and Explosives 4(2):30–34

    Article  CAS  Google Scholar 

  37. Mathieu D (2016) Physics-based modeling of chemical hazards in a regulatory framework: comparison with quantitative structure-property relationship (QSPR) methods for impact sensitivities. Ind Eng Chem Res 55(27):7569–7577

    Article  CAS  Google Scholar 

  38. Zhang CY (2009) Review of the establishment of nitro group charge method and its applications. J Hazard Mater 161(1):21–28

    Article  CAS  PubMed  Google Scholar 

  39. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C-NO2/N-NO2 bond dissociation energies. Mol Phys 107(1):89–97

    Article  CAS  Google Scholar 

  40. Yan QL, Zeman S (2013) Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review. Int J Quantum Chem 113(8):1049–1061

    Article  CAS  Google Scholar 

  41. Li G, Zhang C (2020) Review of the molecular and crystal correlations on sensitivities of energetic materials. J Hazard Mater 398:122910

    Article  CAS  PubMed  Google Scholar 

  42. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules. Chem Phys Lett 116(5):434–438

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  44. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93(2):187–194

    Article  CAS  Google Scholar 

  45. Ren FD, Cao DL, Shi WJ, Gao HF (2016) A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in strained cyclic explosive and application to H-bonded complex of nitrocyclohydrocarbon. J Mol Model 22(4):8

    Article  PubMed  Google Scholar 

  46. Politzer P, Murray JS, Serninario JM, Lane P, Grice ME, Concha MC (2001) Computational characterization of energetic materials. Theochem-J Mol Struct 573:1–10

    Article  CAS  Google Scholar 

  47. Rice BM, Sahu S, Owens FJ (2002) Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. Theochem-J Mol Struct 583:69–72

    Article  CAS  Google Scholar 

  48. Li JS (2010) Relationships for the impact sensitivities of energetic C-nitro compounds based on bond dissociation energy. J Phys Chem B 114(6):2198–2202

    Article  CAS  PubMed  Google Scholar 

  49. Li J (2010) A quantitative relationship for the shock sensitivities of energetic compounds based on X–NO2 (X=C, N, O) bond dissociation energy. J Hazard Mater 180(1):768–772

    Article  CAS  PubMed  Google Scholar 

  50. Song XS, Cheng XL, Yang XD, He B (2006) Relationship between the bond dissociation energies and impact sensitivities of some nitro-explosives. Propellants Explos Pyrotech 31(4):306–310

    Article  CAS  Google Scholar 

  51. Mathieu D (2012) Theoretical shock sensitivity index for explosives. J Phys Chem A 116(7):1794–1800

    Article  CAS  PubMed  Google Scholar 

  52. Mathieu D (2017) Sensitivity of energetic materials: theoretical relationships to detonation performance and molecular structure. Ind Eng Chem Res 56(29):8191–8201

    Article  CAS  Google Scholar 

  53. Keshavarz MH (2010) Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines, and nitroaliphatics. Propellants Explos Pyrotech 35(2):175–181

    Article  CAS  Google Scholar 

  54. Keshavarz MH (2013) A new general correlation for predicting impact sensitivity of energetic compounds. Propellants Explos Pyrotech 38(6):754–760

    Article  CAS  Google Scholar 

  55. Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K (2017) New correlation between electric spark and impact sensitivities of nitramine energetic compounds for assessment of their safety. Z Anorg Allg Chem 643(19):1227–1231

    Article  CAS  Google Scholar 

  56. Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K (2017) Correlation between shock sensitivity of nitramine energetic compounds based on small-scale gap test and their electric spark sensitivity. Z Anorg Allg Chem 643(24):2158–2162

    Article  CAS  Google Scholar 

  57. Keshavarz MH, Abadi YH (2018) Novel organic compounds containing nitramine groups suitable as high-energy cyclic nitramine compounds. ChemistrySelect 3(28):8238–8244

    Article  CAS  Google Scholar 

  58. Shoaf AL, Bayse CA (2018) Trigger bond analysis of nitroaromatic energetic materials using wiberg bond indices. J Comput Chem 39(19):1236–1248

    Article  CAS  PubMed  Google Scholar 

  59. Stone AJ (1981) Distributed multipole analysis, or how to describe a molecular charge-distribution. Chem Phys Lett 83(2):233–239

    Article  CAS  Google Scholar 

  60. Stone AJ, Alderton M (1985) Distributed multipole analysis - methods and applications. Mol Phys 56(5):1047–1064

    Article  CAS  Google Scholar 

  61. Stone AJ (2000) The theory of intermolecular forces. International Series of Monographs on Chemistry. Oxford University Press, Oxford

  62. Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1(6):1128–1132

    Article  CAS  PubMed  Google Scholar 

  63. Borges I (2008) Conformations and charge distributions of diazocyclopropanes. Int J Quantum Chem 108(13):2615–2622

    Article  CAS  Google Scholar 

  64. Anders G, Borges I (2011) Topological analysis of the molecular charge density and impact sensitivy models of energetic molecules. J Phys Chem A 115(32):9055–9068

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira RSS, Borges Jr I (2020) Correlation between molecular charge properties and impact sensitivity of explosives: nitrobenzene derivatives. Propellants, Explosives, Pyrotechnics (at press)

  66. Moraes TF, Borges I (2011) Nuclear Fukui functions and the deformed atoms in molecules representation of the electron density: application to gas-phase RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine) electronic structure and decomposition. Int J Quantum Chem 111 (7–8):1444–1452

  67. Giannerini T, Borges I (2015) Molecular electronic topology and fragmentation onset via charge partition methods and nuclear Fukui functions: 1,1-diamino-2,2-dinitroethylene. J Braz Chem Soc 26(5):851–859

    CAS  Google Scholar 

  68. Oliveira MAS, Borges I (2019) On the molecular origin of the sensitivity to impact of cyclic nitramines. Int J Quantum Chem 119(8):14

    Article  Google Scholar 

  69. de Oliveira RSS, Borges I (2019) Correlation between molecular charge densities and sensitivity of nitrogen-rich heterocyclic nitroazole derivative explosives. J Mol Model 25(10):314

    Article  PubMed  Google Scholar 

  70. Borges I, Silva AM, Aguiar AP, Borges LEP, Santos JCA, Dias MHC (2007) Density functional theory molecular simulation of thiophene adsorption on MoS2 including microwave effects. Theochem-J Mol Struct 822(1–3):80–88

    Article  CAS  Google Scholar 

  71. Borges I, Silva AM (2012) Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters. J Braz Chem Soc 23(10):1789–1799

    Article  CAS  Google Scholar 

  72. Borges I, Silva AM, Modesto-Costa L (2018) Microwave effects on NiMoS and CoMoS single-sheet catalysts. J Mol Model 24(6):8

    Article  Google Scholar 

  73. Silva AM, Borges I (2011) How to find an optimum cluster size through topological site properties: Mosx model clusters. J Comput Chem 32(10):2186–2194

    Article  CAS  PubMed  Google Scholar 

  74. Dlott DD (2003) Fast molecular processes in energetic materials. In: Politzer P, Murray JS (eds) energetic materials. Part 2. Detonation, combustion, vol 12. Elsevier, Amsterdam,

  75. Brill TB, James KJ (1993) Thermal decomposition of energetic material. 61. Perfidy in the amini-2,4,6-trinitrobenzene series of explosives. J Phys Chem 97(34):8752–8758

    Article  CAS  Google Scholar 

  76. Pro S (1999). Wavefunction, Irvine

  77. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136 (3B):B864-&

  78. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133–1138

    Article  Google Scholar 

  79. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  80. Frisch MJ (et al., Gaussian 03, Revision B.01, 2003) Gaussian 03, Revision B.01

  81. Price SL, Stone AJ (1983) A distributed multipole analysis of charge-densities of the azabenzene molecules. Chem Phys Lett 98(5):419–423

    Article  CAS  Google Scholar 

  82. Atkins PW, dePaula J (2006) Physical chemistry8th edn. W. H, Freeman and Company, New York (NY)

    Google Scholar 

  83. Politzer P, Murray JS, Lane P, Sjoberg P, Adolph HG (1991) Shock-sensitivity relationships for nitramines and nitroaliphatics. Chem Phys Lett 181(1):78–82

    Article  CAS  Google Scholar 

  84. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev-Comput Mol Sci 1(2):153–163

    Article  CAS  Google Scholar 

  85. Clark T, Murray JS, Politzer P (2018) A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys Chem Chem Phys 20(48):30076–30082

    Article  CAS  PubMed  Google Scholar 

  86. Politzer P, Murray JS, Clark T, Resnati G (2017) The sigma-hole revisited. Phys Chem Chem Phys 19(48):32166–32178

    Article  CAS  PubMed  Google Scholar 

  87. Politzer P, Murray JS (2018) The Hellmann-Feynman theorem: a perspective. J Mol Model 24(9):7

    Article  Google Scholar 

  88. Xiang D, Zhu WH (2017) Thermal decomposition of isolated and crystal 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane according to ab initio molecular dynamics simulations. RSC Adv 7(14):8347–8356

    Article  CAS  Google Scholar 

  89. Storm CB, Stine JR, Kramer JF (1990) In: chemistry and physics of energetic materials. Kluwer Acad. Publ, Dordrecht, pp 605–640

    Book  Google Scholar 

  90. Fischer JW, Hollins RA, LoweMa CK, Nissan RA, Chapman RD (1996) Synthesis and characterization of 1,2,3,4-cyclobutanetetranitramine derivatives. J Organomet Chem 61(26):9340–9343

    Article  CAS  Google Scholar 

  91. Yau AD, Byrd EFC, Rice BM (2009) An investigation of KS-DFT electron densities used in atoms-in-molecules studies of energetic molecules. J Phys Chem A 113(21):6166–6171

    Article  CAS  PubMed  Google Scholar 

  92. Dubovitskii FI, Korsunskii BL (1981) Kinetics of the thermal decomposition ofN-nitro-compounds. Russ Chem Rev 50(10):958–978

    Article  Google Scholar 

  93. Astakhov AM, Dyugaev KP, Kuzubov AA, Nasluzov VA, Vasiliev AD, Buka ÉS (2009) Theoretical studies of the structure of nitrimines. I. Structure of 2-nitroguanidine and its alkyl derivatives. J Struct Chem 50(2):201–211

    Article  CAS  Google Scholar 

  94. Bracuti AJ (1999) Crystal structure refinement of nitroguanidine. J Chem Crystallogr 29(6):671–676

    Article  CAS  Google Scholar 

  95. Moxnes JF, Froyland O, Risdal T (2017) A computational study of ANTA and NTO derivatives. J Mol Model 23(8):8

    Article  Google Scholar 

  96. Schmidt NB, Lee GS, Mitchell AR, Gilardi R (2001) Synthesis and properties, of a new explosive, 4-amino-3,5-d i n it ro-1 H-Pyrazole(LLM-116). Lawrence Livermore National Laboratory, Lawrence Livermore National Laboratory

    Google Scholar 

  97. Bulusu NB (1990) Chemistry and physics of energetic materials, vol 309. 1st edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  98. Depaz JLG, Ciller J (1994) Structure and tautomerismo of anta (aminonitrotriazole). Propellants Explos Pyrotech 19(1):32–41

    Article  CAS  Google Scholar 

  99. Su XF, Cheng XL, Ge SH (2009) Theoretical investigation on structure and properties of 2,4,5-trinitroimidazole and its three derivatives. Theochem-J Mol Struct 895(1–3):44–51

    Article  CAS  Google Scholar 

  100. Damavarapu R, Surapaneni CR, Duddu RG, Zhang M, Dave PR (2007) Melt-cast explosive material. United States Patent,

  101. Kalescky R, Kraka E, Cremer D (2013) Local vibrational modes of the formic acid dimer – the strength of the double hydrogen bond. Mol Phys 111(9–11):1497–1510

    Article  CAS  Google Scholar 

  102. Tao Y, Zou W, Kraka E (2017) Strengthening of hydrogen bonding with the push-pull effect. Chem Phys Lett 685:251–258

    Article  CAS  Google Scholar 

  103. Freindorf M, Kraka E, Cremer D (2012) A comprehensive analysis of hydrogen bond interactions based on local vibrational modes. Int J Quantum Chem 112(19):3174–3187

    Article  CAS  Google Scholar 

  104. Politzer P, Seminario JM, Bolduc PR (1989) A proposed interpretation of the destabilizing effect of hydroxyl-groups of nitroaromatic molecules. Chem Phys Lett 158(5):463–469

    Article  CAS  Google Scholar 

  105. Murray JS, Lane P, Politzer P, Bolduc PR (1990) A relationship between impact sensitivy and the electrostatic potentials at the midpoints of C-NO2 bonds in nitroaromatics. Chem Phys Lett 168(2):135–139

    Article  CAS  Google Scholar 

  106. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109(18):8978–8982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank an anonymous referee of another publication [68] for suggesting to pursue further a Coulombic force for modeling the sensitivity of explosives. The support of the Brazilian Army to this work through our Institute is greatly acknowledged.

Funding

Support for this research is from the Brazilian agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) through research grants 304148/2018-0 and 409447/2018-8. R. S. S. O. has a Ph.D. scholarship from Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Itamar Borges Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The Gaussian, Sparta, and the GDMA2 (http://www-stone.ch.cam.ac.uk/pub/gdma/) programs were used to generate the data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The online version of this article has additional Supplementary Material that includes acronyms of the molecules; monopole values and Coulombic force values of the N-NO2 and C-NO2 bonds; normalized Coulombic force values for the analyzed molecules and converged geometry data for the nitramine and nitroazole molecules. (DOCX 4167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.A.S., Oliveira, R.S.S. & Borges, I. Quantifying bond strengths via a Coulombic force model: application to the impact sensitivity of nitrobenzene, nitrogen-rich nitroazole, and non-aromatic nitramine molecules. J Mol Model 27, 69 (2021). https://doi.org/10.1007/s00894-021-04669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04669-5

Keywords

Navigation