Skip to main content
Log in

Effects of boron doping on structural, electronic, elastic, and optical properties of energetic crystal 2,6-diamino-3,5-dinitropyrazine-1-oxide: a theoretical study using the first principles calculation and Hirshfeld surface analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Boron-contained compounds are one kind of new energetic materials, and have been synthesized successfully lately. However, the effects of introduced boron atoms into the energetic system are unclear. In this work, using the known insensitive energy crystal 2,6-diamino-3,5-dinitropyrazine-l-oxide (LLM-105) as the model compound, boron doping effects on its crystal structure, band gap and structure, intermolecular contacts, sensitivity, elastic property, optical absorption behavior, and dielectric function were studied by the first principles calculations and Hirshfeld surface analysis. One B atom was doped at four different doping sites in the ring (two kinds of nitrogen N1/N2 and carbon atoms C3/C4), respectively, and formed four new crystals LLM-105-B1/B2/B3/B4. The results showed that the B atom and its doping site both make great influence on the structure and properties. The B doping obviously decreased the band gap and weakened the strength of intermolecular contacts, giving rise to higher sensitivity and worse safety. Especially for LLM-105-B4 which has a 0 eV value of band gap, the doped B atom made great contributions to the density of states around the Fermi level, leading to the suddenly move down of lowest unoccupied molecular orbital and directly link of total density of states at the Fermi level. Doping the B atom at the site C3 improved the ductility and plasticity of LLM-105, while LLM-105-B2 was found to be the most brittle and anisotropic crystal. Doping B atoms at sites N2 and C4 increased the absorption to green, orange, and red lights, while the absorption strength to the infrared light was enhanced in most cases. The dielectric constant and polarity were significantly increased by doping boron atoms at sites C3 and C4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gilardi RD, Butcher RJ (2011) Acta Cryst E 57:657–658

    Article  Google Scholar 

  2. Tang YX, He CL, Imler GH, Parrish DA, Shreeve JM (2018) J Mater Chem A 6:8382–8387

    Article  CAS  Google Scholar 

  3. Kumar D, Tang YX, He CL, Imler GH, Parrish DA, Shreeve JM (2018) Eur J Chem 24:17220–17224

    Article  CAS  Google Scholar 

  4. He CL, Gao HH, Imler GH, Parrish DA, Shreeve JM (2018) J Mater Chem A 6:9391–9396

    Article  CAS  Google Scholar 

  5. Zhang WQ, Zhang JH, Deng MC, Qi XJ, Nie FD, Zhang QH (2017) Nat Commun 8:181

    Article  Google Scholar 

  6. Wang Y, Liu YJ, Song SW, Yang ZJ, Qi XJ, Wang KC, Liu Y, Zhang QH, Tian Y (2018) Nat Commun 9:2444

    Article  Google Scholar 

  7. Wang Q, Shao YL, Lu M (2019) Chem Commun 55:6062–6065

    Article  CAS  Google Scholar 

  8. Bélanger-Chabot G, Rahm M, Haiges R, Christe KO (2015) Angew Chem Int Ed 127:11896–11900

    Article  Google Scholar 

  9. Shitov OP, Tartakovsky VA, Golovanov IS, Sukhorukov AY, Loffe SL (2017) Chem Asian J 12:2237–2244

    Article  CAS  Google Scholar 

  10. Wu WJ, Chi WJ, Li QS, Ji JN, Li ZS (2017) J Phys Org Chem 30:3699

    Article  Google Scholar 

  11. Wu WJ, Chi WJ, Li QS, Ji JN, Li ZS (2017) J Mol Model 23:191

    Article  Google Scholar 

  12. Zeng X, Li N, Jiao QJ (2018) RSC Adv 8:14654–14462

    Article  CAS  Google Scholar 

  13. Hamann DR, Schlüter M, Chiang C (1979) Phys Rev Lett 43:1494

    Article  CAS  Google Scholar 

  14. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  15. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Article  Google Scholar 

  16. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) J Chem Phys 125:224106

    Article  Google Scholar 

  17. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K (2005) Payne MC. Z Krist-Cryst Mater 220:567–570

    CAS  Google Scholar 

  18. Wolff S, Grimwood D, Mckinnon J, Turner M, Jayatilaka D, Spackman M (2012) Crystalexplorer (version 3.0). University of Western Australia

  19. Crowley JM, Tahir-Kheli J, Goddard WA (2016) J Phys Chem Lett 7:1198–1203

    Article  CAS  Google Scholar 

  20. Ramasubramaniam A, Naveh D, Towe E (2011) Phys Rev B 84:205325

    Article  Google Scholar 

  21. Patra A, Jana S, Myneni H, Samal P (2019) Phys Chem Chem Phys 21:19639–19650

    Article  CAS  Google Scholar 

  22. Guo SY, Zhu Z, Hu XM, Zhou WH, Song XF, Zhang SL, Zhang K, Zeng HB (2018) Nanoscale 10:8397–8403

    Article  CAS  Google Scholar 

  23. Wang Y, Huang CB, Li D, Li P, Yu JY, Zhang YZ, Xu JR (2019) J Phys Condens Matter 31:285501

    Article  CAS  Google Scholar 

  24. Wang Y, Huang CB, Li D, Huang F, Zhang XY, Huang K, Xu JR (2019) J Phys Condens Matter 31:465502

    Article  CAS  Google Scholar 

  25. Zhu WH, Xiao HM (2010) Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  26. Ma Y, Meng LY, Li HZ, Zhang CY (2017) CrystEngComm 19:3145–3155

    Article  CAS  Google Scholar 

  27. Wu Q, Li MQ, Hu QN, Zhang ZW, Zhu WH (2020) J Mater Sci 55:237–249

    Article  CAS  Google Scholar 

  28. Tian BB, Xiong Y, Chen LZ, Zhang CY (2018) CrystEngComm 20:837–848

    Article  CAS  Google Scholar 

  29. Baxter AF, Martin I, Christe KO, Haiges R (2018) J Am Chem Soc 140:15089–15098

    Article  CAS  Google Scholar 

  30. Born M, Huang K (1982) Dynamical theory and experiment I. Springer-Verlag, Berlin

    Google Scholar 

  31. Stavrou E, Manaa MR, Zaug JM, Kuo IFW, Pagoria PF, Kalkan B, Crowhurst JC, Armstrong MR (2015) J Chem Phys 143:144506

    Article  Google Scholar 

  32. Zong HH, Zhang LL, Zhang WB, Jiang SL, Yu Y, Chen J (2017) J Mol Model 23:275

    Article  Google Scholar 

  33. Saha S, Sinha TP (2006) Phys Rev B 62:8828

    Article  Google Scholar 

  34. Zhu WH, Xiao JJ, Xiao HM (2006) J Phys Chem B 110:9856–9862

    Article  CAS  Google Scholar 

Download references

Funding

The present work was supported by the Natural Science Foundation of Jiangsu (BK20170761, BK20160774), the Natural Science Foundation of Nanjing Institute of Technology (JCYJ201806, CKJA201603), the Jiangsu Key Laboratory Opening Project of Advanced Structural Materials and Application Technology (ASMA201707), Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province, and Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Li, M., Hu, Q. et al. Effects of boron doping on structural, electronic, elastic, and optical properties of energetic crystal 2,6-diamino-3,5-dinitropyrazine-1-oxide: a theoretical study using the first principles calculation and Hirshfeld surface analysis. J Mol Model 26, 41 (2020). https://doi.org/10.1007/s00894-020-4310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4310-2

Keywords

Navigation