Skip to main content
Log in

Phase stability, brittle-ductile transition, and electronic structures of the TiAl alloying with Fe, Ru, Ge, and Sn: a first-principle investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Phase stability, brittle-ductile transition, and electronic structures of M (M = Fe, Ru, Ge, and Sn) and content change of L10-TiAl (γ-TiAl) and B2-TiAl (β-TiAl) have been investigated using first-principle methods. It is found that M metal atoms preferentially occupy the Al (2e) sites in L10-TiAl and B2-TiAl. According to Pugh’s ratio and Poisson’s ratio, the brittle-ductile transition is predicted for L10-TiAl and B2-TiAl with Fe, Ru, Ge, and Sn. It is found that the brittle-ductile transition from brittle regions to ductile regions with the transition metal elements Fe and Ru in L10-TiAl and B2-TiAl at the low concentration is approximately from 0 to 6.25 at.%. However, the brittle-ductile transition of Ge and Sn at the high concentration approximates from 6.25 to 12.5 at.% in L10-TiAl, comparing with B2-TiAl which approximates from 12.5 to 18.75 at.%. Electronic structure analysis shows that the improvement of brittleness can be attributed to two factors, including different hybridizations of Al-2p (Ti-3d) orbits with Fe-3d (Ge-4p) and Ru-4d (Sn-5p) orbits and different bandwidths of pseudo-gap. Furthermore, the L10-TiAl and B2-TiAl at low concentration of Fe and Ru can increase the value of ELF, where Ge and Sn atoms become bigger at a high concentration in L10-TiAl and B2-TiAl. At last, elastic constant (Cij), bulk modulus (B), shear modulus (G), and Young’s modulus (E) of L10 and B2-TiAl with content change are systematically given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Appel F, Oehring M, Wagner R (2000). Intermetallics 8:0–1312

    Article  CAS  Google Scholar 

  2. Kabir MR, Chernova L, Bartsch M (2010). Acta Materialia 58:5834–5847

    Article  CAS  Google Scholar 

  3. Kim SW, Hong JK, Na YS, Yeom JT, Kim SE (2014). Materials and Design 54:814–819

    Article  CAS  Google Scholar 

  4. Yamaguchi M, Inui H, Ito K (2000). Acta Materialia 48:307–322

    Article  CAS  Google Scholar 

  5. Su Yanqing GJ, Jun J, Guizhong L, Yuan L (2002). Journal of Alloys and Compounds 334:261–266

    Article  Google Scholar 

  6. C.T. Liu, J.L. Wright, Deevi, S.C.. 2002. Materials Science and Engineering A: 416–23

  7. Shyh-Chin HL et al (1991). Metallurgical and Materials Transactions A 22A:2619–2627

    Google Scholar 

  8. Clemens HJ, Bartels A, Bystrzanowski S, Chladil HF, Leitner H et al (2006). Intermetallics 14:1380–1385

    Article  CAS  Google Scholar 

  9. Kawabata T, Fukai H, Izumi O (1998). Acta Materialia 46:2185–2194

    Article  CAS  Google Scholar 

  10. Liu ZC, Lin JP, Li SJ, Chen GL (2002). Intermetallics 10:653–659

    Article  CAS  Google Scholar 

  11. Shu S, Feng Q, Tong C, Shan X, Jiang Q (2014). Journal of Alloys and Compounds 617:302–305

    Article  CAS  Google Scholar 

  12. Chao J (2008). Acta Materialia 56:6224–6231

    Article  Google Scholar 

  13. Tang, Ping Ying, Tang, Bi Yu, SU, Xu Ping. 2011. Computational Materials Science 50:1467–1476

  14. Duwez P TJL. 1952. 4(1):70–71

  15. Jian Y, Huang Z, Xing J, Sun L, Liu Y, Gao P (2019). Materials Chemistry and Physics 221:311–321

    Article  CAS  Google Scholar 

  16. Masao Kimura KHaHM. Materials Science and Engineering: 54–9

  17. Li YG, Loretto MH (1994). Acta Metallurgica et Materialia 42:2913–2919

    Article  CAS  Google Scholar 

  18. Liu Q, Nash P (2011). Intermetallics 19:1282–1290

    Article  CAS  Google Scholar 

  19. Duan Q, Luan Q, Jing L, Peng L (2010). Materials and Design 31:3499–3503

    Article  CAS  Google Scholar 

  20. Lindan PJD (2002). Journal of Physics. Condensed Matter 14:2717–2744

    Article  Google Scholar 

  21. Blochl PE. 1994. Physical review. B, Condensed matter 50:17953–17979

  22. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR et al (1992). Physical Review B: Condensed Matter 46:6671–6687

    Article  CAS  Google Scholar 

  23. Chen JS, Zhang HK, Zhang PL, Yu ZS, Zhang YZ, Yu C, Lu H (2019). Journal of Materials Research and Technology 8:4141–4150

    Article  CAS  Google Scholar 

  24. Pfrommer BG, Cté M, Louie SG, Cohen ML. Journal of Computational Physics 131:233–240

  25. Clarke, D.R. 2012. 60:3380–92

  26. Duan YH, Huang B, Sun Y, Peng MJ, Zhou SG (2014). Journal of Alloys and Compounds 590:50–60

    Article  CAS  Google Scholar 

  27. Y.L. Hao, D.S.X., Y.Y. Cui, R. Yang and D. Li. 1999. Acta Matter. 47

  28. Jiang C, Sordelet DJ, Gleeson B. Acta Materialia 54:1147–1154

  29. Yu R, He LL, Ye HQ (2002). Physical Review B 65:184102

    Article  Google Scholar 

  30. Zope RR, Mishin Y (2003). Physical Review B 68:366–369

    Article  Google Scholar 

  31. Shea JJ (2005). IEEE Electrical Insulation Magazine 21:56

    Google Scholar 

  32. Desai PD (1987). Journal of Physical and Chemical Reference Data 16:109–124

    Article  CAS  Google Scholar 

  33. Inkson BJ, Clemens H, Marien J (1998). Scripta Materialia 38:1377–1382

    Article  CAS  Google Scholar 

  34. Hai H, Wu X, Rui W, Li W, Liu Q (2016). Journal of Alloys and Compounds 658:689–696

    Article  Google Scholar 

  35. Ohnuma I, Fujita Y, Mitsui H, Ishikawa K, Kainuma R, Ishida K (2000). Acta Materialia 48:3113–3123

    Article  CAS  Google Scholar 

  36. He Y, Schwarz RB, Whang AMSH. 1995. Journal of Materials Research

  37. Kim YK, Kim HK, Jung WS, Lee BJ (2016). Computational Materials Science 119:1–8

    Article  Google Scholar 

  38. Kartavykh AV, Asnis EA, Piskun NV, Statkevich II, Gorshenkov MV, Korotitskiy AV (2017). Materials Letters 188:88–91

    Article  CAS  Google Scholar 

  39. Anderson OL (1963). Journal of Physics and Chemistry of Solids 24:909–917

    Article  CAS  Google Scholar 

  40. Tanaka K (1996). Philosophical Magazine Letters 73:71–78

    Article  CAS  Google Scholar 

  41. Li Y, Gao Y, Xiao B, Min T, Fan Z et al (2010). Journal of Alloys and Compounds 502:28–37

    Article  CAS  Google Scholar 

  42. Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J. 2007. 76

  43. Pugh SF (2009). Philosophical Magazine 45:823–843

    Google Scholar 

  44. * JJL, Wang, W.H., Greer, A.L. 2005. Philosophical Magazine Letters 85:77–87

  45. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998). Journal of Applied Physics 84:4891–4904

    Article  CAS  Google Scholar 

  46. Ranganathan SI, Ostoja-Starzewski M. Physical Review Letters 101:–055504

  47. Krajcí M, Hafner J (2002). Journal of Physics. Condensed Matter 14:1865

    Article  Google Scholar 

  48. Morinaga M, Saito J, Yukawa N, Adachi H (1990). Acta Metallurgica et Materialia 38:25–29

    Article  CAS  Google Scholar 

  49. Sas B (1994). Nature 371:683–686

    Article  Google Scholar 

  50. Zhang HK, Chen JS, Zhang LX, Yu ZS, Zhang PL, Zhang YZ, Yu C, Lu H (2020). Phase Transitions 93:1–16

    Article  Google Scholar 

  51. Zhang ZQ, Chen JS, Zhang WJ, Yu ZS, Yu C, Lu H (2020). Materials Today Communications 24:101182

    Article  CAS  Google Scholar 

Download references

Funding

This project is supported by the National Natural Science Foundation of China (Grant No. 51805316), China Postdoctoral Science Foundation (No.2019M651491), Shanghai Science and Technology Committee Innovation Grant (17JC1400600 17JC1400601, 19511106400 and 19511106402), Karamay Science and Technology Major Project (2018ZD002B), and Aid for Xinjiang Science and Technology Project (2019E0235).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. S. Chen or Y. Z. Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z.K., Chen, J.S., Zhang, P.L. et al. Phase stability, brittle-ductile transition, and electronic structures of the TiAl alloying with Fe, Ru, Ge, and Sn: a first-principle investigation. J Mol Model 26, 320 (2020). https://doi.org/10.1007/s00894-020-04579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04579-y

Keywords

Navigation