Skip to main content
Log in

Theoretical study of switching characteristics of molecular tweezers based on bis(Zn-salphen)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of novel tweezers based on bis(Zn-salphen) complex is theoretically studied. Density functional theory (DFT) method is used to investigate the switchable properties of terpy/bis(Zn-salphen) complex (1, terpy=2,2′:6′,2″-terpyridine) and Br-phtpy/bis(Zn-salphen) complex (2, Br-phtpy=4′-bromophenyl-2,2′:6′,2″-terpyridine). In this study, the free tweezers 1 and 2 can be converted from a “W” open form to a “U” closed form upon Ru(III) coordination. The switching performances were characterized by 1H NMR and absorption spectra. DFT calculations were carried out using a B3LYP-D3 functional and def2-SVP basis set for all atoms. 1H NMR spectra showed that terpyridine protons had an obvious upfield shift during complexation with RuCl3. The absorption spectrum was observed in the closed tweezers with a significant red shift and a decreased oscillator strength. In addition, the tweezers were reopened by introducing molecule pyrazine in the “U”-shaped conformation to form a host-guest system. The recognition ability of two Zn-salphen complexes was studied by geometrical optimization and absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen CW, Whitlock JHW (1978) Molecular tweezers: a simple model of bifunctional intercalation. J Am Chem Soc 100(15):4921–4922

    Article  CAS  Google Scholar 

  2. Leblond J, Petitjean A (2011) Molecular tweezers: concepts and applications. ChemPhysChem 12(6):1043–1051

    Article  CAS  Google Scholar 

  3. Klärner FG, Kahlert B (2003) Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor−substrate complexes. Acc Chem Res 36(12):919–932

    Article  CAS  Google Scholar 

  4. Klärner FG, Schrader T (2012) Aromatic interactions by molecular tweezers and clips in chemical and biological systems. Acc Chem Res 46(4):967–978

    Article  CAS  Google Scholar 

  5. Bier D, Mittal S, Rodriguez KB (2017) The molecular tweezer CLR01 stabilizes a disordered protein–protein interface. J Am Chem Soc 139(45):16256–16263

    Article  CAS  Google Scholar 

  6. Dhamija A, Ikbal SA, Rath SP (2016) Induction and rationalization of supramolecular chirality in the tweezer–diamine complexes: insights from experimental and DFT studies. Inorg Chem 55(24):13014–13026

    Article  CAS  Google Scholar 

  7. Raman A, Augustine G, Ayyadurai N (2018) Photoswitchable azobenzene–rhodamine tweezers for biosensing of Al3+ ions. New J Chem 42(11):9300–9305

    Article  CAS  Google Scholar 

  8. Han Y, Tian Y, Li Z, Wang F (2018) Donor–acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem Soc Rev 47(14):5165–5176

    Article  CAS  Google Scholar 

  9. Zimmerman SC, Wu W, Zeng Z (1991) Complexation of nucleotide bases by molecular tweezers with active site carboxylic acids: effects of microenvironment. J Am Chem Soc 113(1):196–201

    Article  CAS  Google Scholar 

  10. Zimmerman SC (1993) Rigid molecular tweezers as hosts for the complexation of neutral guests. Top Curr Chem 165:71–102

    Article  CAS  Google Scholar 

  11. Hardouin-Lerouge M, Hudhomme P, Sallé M (2011) Molecular clips and tweezers hosting neutral guests. Chem Soc Rev 40(1):30–43

    Article  CAS  Google Scholar 

  12. Leblond J, Gao H, Petitjean A (2010) pH-responsive molecular tweezers. J Am Chem Soc 132(25):8544–8545

    Article  CAS  Google Scholar 

  13. Shinkai S, Nakaji T, Ogawa T (1981) Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis (crown ether) with a butterfly-like motion. J Am Chem Soc 103(1):111–115

    Article  CAS  Google Scholar 

  14. Petitjean A, Khoury RG, Kyritsakas N, Lehn JM (2004) Dynamic devices. Shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J Am Chem Soc 126(21):6637–6647

    Article  CAS  Google Scholar 

  15. Lee CH, Yoon H, Jang WD (2009) Biindole-bridged porphyrin dimer as allosteric molecular tweezers. Chem–Eur J 15(39):9972–9976

    Article  CAS  Google Scholar 

  16. Hofmeier H, Schubert US (2004) Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem Soc Rev 33(6):373–399

    Article  CAS  Google Scholar 

  17. Linke-Schaetzel M, Anson CE, Powell AK (2006) Dynamic chemical devices: photoinduced electron transfer and its ion-triggered switching in nanomechanical butterfly-type bis (porphyrin) terpyridines. Chem-Eur J 12(7):1931–1940

    Article  CAS  Google Scholar 

  18. Tian YK, Shi YG, Yang Z, Wang F (2014) Responsive supramolecular polymers based on the bis [alkynylplatinum (II)] terpyridine molecular tweezer/arene recognition motif. Angew Chem Int Edit 53(24):6090–6094

    Article  CAS  Google Scholar 

  19. Doistau B, Tron A, Denisov SA (2014) Terpy (Pt–salphen)2 switchable luminescent molecular tweezers. Chem-Eur J 20(48):15799–15807

    Article  CAS  Google Scholar 

  20. Doistau B, Rossi-Gendron C, Tron A (2015) Switchable platinum-based tweezers with Pt–Pt bonding and selective luminescence quenching. Dalton Trans 44(18):8543–8551

    Article  CAS  Google Scholar 

  21. Doistau B, Benda L, Cantin JL (2017) Six states switching of redox-active molecular tweezers by three orthogonal stimuli. J Am Chem Soc 139(27):9213–9220

    Article  CAS  Google Scholar 

  22. Isla H, Srebro-Hooper M, Jean M (2016) Conformational changes and chiroptical switching of enantiopure bis-helicenic terpyridine upon Zn2+ binding. Chem Commun 52(35):5932–5935

    Article  CAS  Google Scholar 

  23. Li H, Zhang Y, Jia Z (2019) Theoretical design on molecular tweezers of sodium cyanide by zinc porphyrin-azo-crown ether triads receptor. J Phys Org Chem 32(8):e3963

    Article  CAS  Google Scholar 

  24. Grimme S, Antony J, Ehrlich S (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishid Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman Jr AM, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. J Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  28. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057–1065

    Article  CAS  Google Scholar 

  29. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

  30. Lu T, Molclus program, version 1.9.3. Available at: http://www.keinsci.com/research/molclus.html. Accessed 9 March 2020

  31. Lu T, Feiwu C (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  Google Scholar 

  32. Lu T (2014) Multiwfn software manual, version 3.6(dev), Section 3.100.12

  33. Escudero-Adán EC, Benet-Buchholz J, Kleij AW (2009) Trapping of a four-coordinate zinc salphen complex inside a crystal matrix. Chem-Eur J 15(17):4233–4237

    Article  CAS  Google Scholar 

  34. Salassa G, Castilla AM, Kleij AW (2011) Cooperative self-assembly of a macrocyclic Schiff base complex. J Chem Soc Dalton Trans 40(19):5236–5243

    Article  CAS  Google Scholar 

  35. Nabeshima T, Hasegawa Y, Trokowski R, Yamamura M (2012) Synthesis and guest recognition of molecular cleft consisting of terpyridine-Pt(II) acetylide complexes. Tetrahedron Lett 53(46):6182–6185

    Article  CAS  Google Scholar 

  36. Tanaka Y, Wong KMC, Yam VWW (2013) Host–guest interactions of phosphorescent molecular tweezers based on an alkynylplatinum (II) terpyridine system with polyaromatic hydrocarbons. Chem Eur J 19(1):390–399

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Guan, Q., Jia, Z. et al. Theoretical study of switching characteristics of molecular tweezers based on bis(Zn-salphen). J Mol Model 26, 265 (2020). https://doi.org/10.1007/s00894-020-04527-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04527-w

Keywords

Navigation