Skip to main content
Log in

Investigation on mechanical behaviors of Cu-Ni binary alloy nanopillars: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cu-Ni binary alloy has become the attention of scientific world for its potentials in nanodevices. It is indispensable to investigate on the mechanical properties of this material due to lack of previous work done regarding this binary alloy. Molecular dynamics (MD) studies were performed on nanopillar (NP) structures comprised of Cu-Ni binary alloy having an FCC unit cell with Cu atoms selectively replaced by Ni atoms. This selective replacement resulted in a better stress behavior than the randomly replaced alloy structure when both tension and compression load were applied. The effect of crystal orientation, NP dimensions, temperature, and strain rate on the stress–strain curve of Cu-Ni binary alloy NPs was thoroughly investigated under tensile loading. This investigation reveals significant influence of crystal orientation on ultimate strength and flow stress region. Among four different crystal orientations, <111> orientation shows maximum strength behavior under tensile loading, while <110> shows highest strength under compressive load. However, in both cases, i.e. tension and compression, the poorest stress behavior was observed for <001> orientation. Under tensile load, <111>-oriented binary alloy fails due to the formation of Shockley partials followed by formation of complex dislocation network. On the other hand, <110>-oriented binary alloy fails due to the formation of Lomer–Cottrell (LC) lock from the Shockley partials. Total dislocation length is calculated, and its effect on the stress–strain behavior of the Cu-Ni binary alloy is discussed. Highest Young’s modulus and yield stress are observed on <111>-oriented binary alloy among other orientations, and these values for <111>-oriented NP was found to decrease with the increment of temperature. If the temperature is increased, yield stress and Young’s modulus decrease. The effect of cross section width was also investigated in this study, and it was found that yield stress decreases with the increment of cross section width due to the effect of surface atom fraction. Increasing the strain rate causes the initiation of amorphous structure, resulting in superplastic behavior of the <111>-oriented Cu-Ni binary alloy NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lu L, Chen X, Huang X, Lu K (2009). Science 323:607–610

    CAS  PubMed  Google Scholar 

  2. X. Zhang, H. Wang, X. H. Chen, L. Lu, K. Lu, R. G. Hoagland and A. Misra: Applied Physics Letters, 2006, vol. 88, pp. 173116

  3. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004). Appl. Phys. Lett. 85:929–931

    CAS  Google Scholar 

  4. Ma E, Wang YM, Lu QH, Sui ML, Lu L, Lu K (2004). Appl. Phys. Lett. 85:4932–4934

    CAS  Google Scholar 

  5. Wu B, Heidelberg A, Boland JJ (2005). Nat. Mater. 4:525–529

    CAS  PubMed  Google Scholar 

  6. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004). Science 305:986–989

    CAS  PubMed  Google Scholar 

  7. A. J. Cao, Y. G. Wei and S. X. Mao: Applied Physics Letters, 2007, vol. 90, pp. 151909

  8. Yasui T, Rahong S, Kaji N, Baba Y (2014). Israel Journal of Chemistry 54:1556–1563

    CAS  Google Scholar 

  9. Yasui T, Kaji N, Mohamadi MR, Okamoto Y, Tokeshi M, Horiike Y, Baba Y (2011). ACS Nano 5:7775–7780

    CAS  PubMed  Google Scholar 

  10. Kaji N, Tezuka Y, Takamura Y, Ueda M, Nishimoto T, Nakanishi H, Horiike Y, Baba Y (2004). Anal. Chem. 76:15–22

    CAS  PubMed  Google Scholar 

  11. Kaji N, Oki A, Ogawa R, Takamura Y, Nishimoto T, Nakanishi H, Horiike Y, Tokeshi M, Baba Y (2007). Israel Journal of Chemistry 47:161–169

    CAS  Google Scholar 

  12. T. Yasui, N. Kaji, Y. Okamoto, M. Tokeshi,Y. Horiike and Y. Baba: Microfluid. Nanofluid., 2012, vol. 14, pp. 961–967

  13. C. R. Weinberger and G. J. Tucker: Modelling and Simulation in Materials Science and Engineering, 2012, vol. 20, pp. 075001

  14. A. M. Iskandarov, S. V. Dmitriev and Y. Umeno: Physical Review B, 2011, vol. 84, pp. 224118

  15. Rohith P, Sainath G, Choudhary BK (2017). Comput. Mater. Sci. 138:34–41

    CAS  Google Scholar 

  16. Sainath G, Rohith P, Choudhary BK (2017). Philos. Mag. 97:2632–2657

    CAS  Google Scholar 

  17. K. Kolluri, M. R. Gungor and D. Maroudas: Journal of Applied Physics, 2009, vol. 105, pp. 093515

  18. Park HS, Gall K, Zimmerman JA (2006). Journal of the Mechanics and Physics of Solids 54:1862–1881

    CAS  Google Scholar 

  19. Dupont V, Sansoz F (2009). J. Mater. Res. 24:948–956

    CAS  Google Scholar 

  20. J.-Y. Kim and J. R. Greer: Applied Physics Letters, 2008, vol. 93, pp. 101916

  21. Kiener D, Motz C, Schöberl T, Jenko M, Dehm G (2006). Adv. Eng. Mater. 8:1119–1125

    CAS  Google Scholar 

  22. J. R. Greer and W. D. Nix: Physical Review B, 2006, vol. 73, pp. 245410

  23. Root SE, Savagatrup S, Pais CJ, Arya G, Lipomi DJ (2016). Macromolecules 49:2886–2894

    CAS  Google Scholar 

  24. J. Guénolé, J. Godet and S. Brochard: Modelling and simulation in Mater. Sci. Eng., 2011, vol. 19, pp. 074003

  25. Dayeh SA, Wang J, Li N, Huang JY, Gin AV, Picraux ST (2011). Nano Lett. 11:4200–4206

    CAS  PubMed  Google Scholar 

  26. H. Zheng, A. Cao, C. R. Weinberger, J. Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia and S. X. Mao: Nature Communications, 2010, vol. 1, pp. 144

  27. Park H, Ji C (2006). Acta Mater. 54:2645–2654

    CAS  Google Scholar 

  28. Cao A, Ma E (2008). Acta Mater. 56:4816–4828

    CAS  Google Scholar 

  29. Gu XW, Loynachan CN, Wu Z, Zhang Y-W, Srolovitz DJ, Greer JR (2012). Nano Lett. 12:6385–6392

    CAS  PubMed  Google Scholar 

  30. Xu S, Guo Y, Ngan A (2013). Int. J. Plast. 43:116–127

    CAS  Google Scholar 

  31. Horstemeyer M, Baskes M, Godfrey A, Hughes D (2002). Int. J. Plast. 18:203–229

    CAS  Google Scholar 

  32. Jo C, Lee JI, Jang Y (2005). Chem. Mater. 17:2667–2671

    CAS  Google Scholar 

  33. Singh PP (2003). J. Magn. Magn. Mater. 261:347–352

    CAS  Google Scholar 

  34. Jartych E, Żurawicz J, Oleszak D, Pȩkała M (1999). Nanostruct. Mater. 12:927–930

    Google Scholar 

  35. Carpenter EE, Sims JA, Wienmann JA, Zhou WL, O’Connor CJ (2000). J. Appl. Phys. 87:5615–5617

    CAS  Google Scholar 

  36. Mattei G, Fernandez CDJ, Mazzoldi P, Sada C, De G, Battaglin G, Sangregorio C, Gatteschi D (2002). Chem. Mater. 14:3440–3447

    CAS  Google Scholar 

  37. James P, Eriksson O, Johansson B, Abrikosov IA (1999). Phys. Rev. B 59:419–430

    CAS  Google Scholar 

  38. Han SW, Kim Y, Kim K (1998). J. Colloid Interface Sci. 208:272–278

    CAS  PubMed  Google Scholar 

  39. Hong R, Fischer NO, Emrick T, Rotello VM (2005). Chem. Mater. 17:4617–4621

    CAS  Google Scholar 

  40. D. K. Kim, D. Kan, T. Veres, F. Normadin, J. K. Liao, H. H. Kim, S. Lee, M. Zahn and M. Muhammed: Journal of Applied Physics, 2005, vol. 97, pp. 10Q918

  41. A. Fortunelli and Velasco Ana María: Journal of Molecular Structure: THEOCHEM, 2002, vol. 586, pp. 17–27

  42. S. Spriano, F. Rosalbino, M. Baricco, P. Morra, E. Angelini, C. Antonione, J.-M Siffre and P. Marcus: Intermetallics, 2000, vol. 8, pp. 299–304

  43. Zhang X, Chan K-Y (2003). Chem. Mater. 15:451–459

    CAS  Google Scholar 

  44. Jahangeer Ahmed, Kandalam V. Ramanujachary, Samuel E. Lofland, Anthony Furiato, Govind Gupta, S.m. Shivaprasad and Ashok K. Ganguli: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, vol. 331, pp. 206–212

  45. Qiwu W, Jianlong Y, Jingfang R, Minming H, Chunhua Y (1990). Catal. Lett. 4:63–74

    Google Scholar 

  46. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002). J. Electrochem. Soc. 149:A247–A250

    CAS  Google Scholar 

  47. Ikeda H, Qi Y, Çagin T, Samwer K, Johnson WL, Goddard WA (1999). Phys. Rev. Lett. 82:2900–2903

    CAS  Google Scholar 

  48. B. Onat and S. Durukanoğlu: Journal of Physics: Condensed Matter, 2013, vol. 26, pp. 035404

  49. Daw MS, Baskes MI (1984). Phys. Rev. B 29:6443–6453

    CAS  Google Scholar 

  50. Foiles SM, Baskes MI, Daw MS (1986). Phys. Rev. B 33:7983–7991

    CAS  Google Scholar 

  51. S. Mojumder, A. A. Amin and M. M. Islam: Journal of Applied Physics, 2015, vol. 118, pp. 124305

  52. Clarke JKA, Spooner TA (1971). J. Phys. D. Appl. Phys. 4:1196–1200

    CAS  Google Scholar 

  53. Zhou XW, Wadley HNG (1998). J. Appl. Phys. 84:2301–2315

    CAS  Google Scholar 

  54. Zimmerman JA, Gao H, Abraham FF (2000). Model. Simul. Mater. Sci. Eng. 8:103–115

    CAS  Google Scholar 

  55. M. Jahnátek, J. Hafner, and M. Krajčí: Physical Review B, 2009, vol. 79, pp. 224103–1–224103-17

  56. Datta A, Waghmare UV, Ramamurty U (2009). Scr. Mater. 60:124–127

    CAS  Google Scholar 

  57. Yin S, Cheng G, Richter G, Gao H, Zhu Y (2019). ACS Nano 13:9082–9090

    CAS  PubMed  Google Scholar 

  58. Yazdandoost F, Mirzaeifar R (2017). J. Alloys Compd. 709:72–81

    CAS  Google Scholar 

  59. V. Borovikov, M. I. Mendelev and A. H. King: Modelling and Simulation in Materials Science and Engineering, 2016, vol. 24, pp. 085017

  60. Clavier G, Desbiens N, Bourasseau E, Lachet V, Brusselle-Dupend N, Rousseau B (2017). Mol. Simul. 43:1413–1422

    CAS  Google Scholar 

  61. Ingel RP, Iii DL (1988). J. Am. Ceram. Soc. 71:265–271

    CAS  Google Scholar 

  62. C. Wang, H. Wang, T. Huang, X. Xue, F. Qiu and Q. Jiang: Scientific Reports, 2015, vol. 5, pp. 10213

  63. C. M. Zener and S. Siegel: The Journal of Physical and Colloid Chemistry, 1949, vol. 53, p. 1468

  64. Salehinia I, Bahr D (2014). Int. J. Plast. 52:133–146

    CAS  Google Scholar 

  65. Yaghoobi M, Voyiadjis GZ (2016). Acta Mater. 121:190–201

    CAS  Google Scholar 

  66. V. K. Sutrakar and D. R. Mahapatra: Nanotechnology, 2008, vol. 20, pp. 045701

  67. Shan-Shan L, Yu-Hua W, Zi-Zhong Z (2008). Chinese Physics B 17:2621–2626

    Google Scholar 

  68. Diao J, Gall K, Dunn ML, Zimmerman JA (2006). Acta Mater. 54:643–653

    CAS  Google Scholar 

  69. Wen Y-H, Zhu Z-Z, Zhu R-Z (2008). Comput. Mater. Sci. 41:553–560

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Mahfuzur Rahman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Islam, M. & Anjum, N. Investigation on mechanical behaviors of Cu-Ni binary alloy nanopillars: a molecular dynamics study. J Mol Model 26, 214 (2020). https://doi.org/10.1007/s00894-020-04440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04440-2

Keywords

Navigation