Skip to main content

Advertisement

Log in

Structural analyses and force fields comparison for NACore (68–78) and SubNACore (69–77) fibril segments of Parkinson’s disease

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The α-synuclein fibrils are a pathological hallmark of Parkinson’s disease (PD) and are abundant in the brains of PD patients. These amyloid fibrils can aggregate into distinct polymorphism under different physical conditions. Therefore, these different fibril polymorph formations should be considered in drug design studies targeting amyloid fibrils. Recently, the atomic structures of two small fibril segments of α-synuclein, named NACore (68–78) and SubNACore (69–77), have been crystallized. These segments are critical for cytotoxicity and fibril formation. Therefore, elucidation of interface interactions between pair sheets of the NACore and SubNACore is significant for the clarification of the mechanism of fibril formation in PD. In this context, molecular dynamics (MD) simulation technique is a convenient tool to investigate interface interactions of these segments at the atomic level. However, the accuracy of these simulations depends on the utilized force fields. Therefore, we have tested the dependence of interface interactions and stabilities of these small amyloid fibrils on various force fields. From the results of triple long (100 ns) MD simulations, we inferred for the stability investigations of the NACore and SubNACore that CHARMM27 and GROMOS53A6 are the most convenient force fields whereas AMBER99SB-ILDN is the most unfavorable one. Consequently, it is expected that our findings will guide the selection of the appropriate force field for simulations between these segments and possible inhibitors of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R (1997). Science 276:2045

    Article  CAS  Google Scholar 

  2. Singleton A, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R (2003). Science 302:841

    Article  CAS  Google Scholar 

  3. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete N-V, Cote S, De Simone A, Doig AJ, Faller P, Garcia A (2015). Chem Rev 115:3518

    Article  CAS  Google Scholar 

  4. Bedrood S, Li Y, Isas JM, Hegde BG, Baxa U, Haworth IS, Langen R (2012). J Biol Chem 287:5235

    Article  CAS  Google Scholar 

  5. Anguiano M, Nowak RJ, Lansbury PT (2002). Biochemistry 41:11338

    Article  CAS  Google Scholar 

  6. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999). Proc Natl Acad Sci 96:4604

    Article  CAS  Google Scholar 

  7. Spillantini MG, Schmidt ML, M-Y Lee V, Trojanowski JQ, Jakes R, Goedert M (1997). Nature 388:839

    Article  CAS  Google Scholar 

  8. Xu L, Nussinov R, Ma B (2016). Eur J Med Chem 121:841

    Article  CAS  Google Scholar 

  9. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M (2015). Nature 525:486

    Article  CAS  Google Scholar 

  10. Bodles AM, Guthrie DJ, Greer B, Irvine GB (2001). J Neurochem 78:384

    Article  CAS  Google Scholar 

  11. Bisaglia M, Trolio A, Bellanda M, Bergantino E, Bubacco L, Mammi S (2006). Protein Sci 15:1408

    Article  CAS  Google Scholar 

  12. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB (2007). J Neurosci 27:3338

    Article  CAS  Google Scholar 

  13. Volles MJ, Lansbury PT (2007). J Mol Biol 366:1510

    Article  CAS  Google Scholar 

  14. Vamvaca K, Volles MJ, Lansbury Jr PT (2009). J Mol Biol 389:413

    Article  CAS  Google Scholar 

  15. EI-Agnaf O, Irvine G (2002). Biochem Soc T 30:559

    Article  Google Scholar 

  16. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003). J Comput Chem 24:1999

    Article  CAS  Google Scholar 

  17. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006). Proteins 65:712

    Article  CAS  Google Scholar 

  18. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010). Proteins 78:1950

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, MacKerell Jr AD (2012). J Chem Theory Comput 8:3257

    Article  CAS  Google Scholar 

  20. MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S (1998). J Phys Chem B 102:3586

    Article  CAS  Google Scholar 

  21. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004). J Comput Chem 25:1656

    Article  CAS  Google Scholar 

  22. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011). Eur Biophys J 40:843

    Article  CAS  Google Scholar 

  23. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001). J Phys Chem B 105:6474

    Article  CAS  Google Scholar 

  24. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D (2013). Bioinformatics 29:845

    Article  CAS  Google Scholar 

  25. Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Intermolecular Forces. Springer, Dordrecht, p 331

    Book  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983). J Chem Phys 79:926

    Article  CAS  Google Scholar 

  27. Darden T, York D, Pedersen L (1993). J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  28. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995). J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  29. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997). J Comput Chem 18:1463

    Article  CAS  Google Scholar 

  30. Miyamoto S, Kollman PA (1992). J Comput Chem 13:952

    Article  CAS  Google Scholar 

  31. Bussi G, Donadio D, Parrinello M (2007). J Chem Phys 126:014101

    Article  Google Scholar 

  32. Parrinello M, Rahman A (1981). J Appl Phys 52:7182

    Article  CAS  Google Scholar 

  33. Kumari R, Kumar R, Consortium OSDD, Lynn A (2014). J Chem Inf Model 54:1951

    Article  CAS  Google Scholar 

  34. Alred EJ, Scheele EG, Berhanu WM, Hansmann UH (2014). J Chem Phys 141:175101

    Article  Google Scholar 

  35. Berhanu WM, Hansmann UH (2013). Proteins 81:1542

    Article  CAS  Google Scholar 

  36. Spiliotopoulos D, Spitaleri A, Musco G (2012). PLoS One 7:e46902

    Article  CAS  Google Scholar 

  37. DeLano WL (2002) The PyMol Molecular Graphics System. De Lano Scientific L.L.C., San Carlos, http://pymol.org

    Google Scholar 

  38. Carballo-Pacheco M, Strodel B (2017). Protein Sci 26:174

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Fund of Zonguldak Bülent Ecevit University with project number 2015-22794455-03, and the numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Alıcı.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 148 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alıcı, H. Structural analyses and force fields comparison for NACore (68–78) and SubNACore (69–77) fibril segments of Parkinson’s disease. J Mol Model 26, 132 (2020). https://doi.org/10.1007/s00894-020-04379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04379-4

Keywords

Navigation