Skip to main content
Log in

Study of molecular interactions by hydrogen bond of charged forms of makaluvamines and complex stability with H2O and glutamic acid (Glu Ac) by the theory of the functional of density (B3LYP)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work was undertaken to understand the mode of interaction of makaluvamines, a class of marine pyrroloiminoquinone alkaloids isolated from sponges of the genus Zyzzya, used in the treatment of several human cancer cell lines. This analysis was done by the quantum chemistry method. First, we used electrostatic potential (ESP) to reveal the different sites that accept and donate hydrogen bonds (HB) of charged forms (protonated and methylated) of makaluvamines (at level B3LYP/6-311++G(d,p)). In a second step, we studied the interactions by hydrogen bond between these molecules and water molecule on the one hand (at level B3LYP/6-311++G(d,p)) and on the other hand glutamic acid a protein residue of topoisomerase II (at level B3LYP/6-31+G(d,p)). Finally, we calculated the corrected BSSE interaction energies and estimated the relative stability of the formed complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. IARC (2011) Cancer Incidence and Mortality Worlwide. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  2. WHO (2011) Global status report on noncommunicable diseases 2010 WT 500. WHO, Geneva, Switzerland

    Google Scholar 

  3. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  Google Scholar 

  4. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61

    Article  CAS  Google Scholar 

  5. Wang W, Rayburn ER, Velu SE, Nadkarni DH, Murugesan S, al. (2009) In vitro and in vivo anticancer activity of novel synthetic makaluvamine analogues. Clin Cancer Res 15(10):3511–3518

    Article  CAS  Google Scholar 

  6. Gupta L, Talwar A, Chauhan PM (2007) Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr Med Chem 14:1789–1803

    Article  CAS  Google Scholar 

  7. Casapullo A, Cutignano A, Bruno I, Bifulco G, Debitus C, al. (2001) Makaluvamine P, a new cytotoxic pyrroloiminoquinone from Zyzzya cf. fuliginosa. J Nat Prod 64:1354–1356

    Article  CAS  Google Scholar 

  8. Venables DA, Concepcion GP, Matsumoto SS, Barrows LR, Ireland CM (1997) Makaluvamine N: a new pyrroloiminoquinone from Zyzzya fuliginosa. J Nat Prod 60:408–410

    Article  CAS  Google Scholar 

  9. Schmidt EW, Harper MK, Faulkner DJ (1995) Makaluvamines H-M and damirone C from the Pohnpeian sponge Zyzzya fuliginosa. J Nat Prod 58:1861–1867

    Article  CAS  Google Scholar 

  10. Carney JR, Scheuer PJ, Kellyborges M (1993) Makaluvamine-G, a Cytotoxic Pigment from an Indonesian Sponge Histodermella Sp. Tetrahedron 49:8483–8486

    Article  CAS  Google Scholar 

  11. Barrows LR, Radisky DC, Copp BR, Swaffar DS, Kramer RA, al. (1993) Makaluvamines, marine natural products, are active anti-cancer agents and DNA. topo II inhibitors. Anticancer Drug Des 8(5):333–347

    CAS  PubMed  Google Scholar 

  12. Radisky DC, Radisky ES, Barrows LR, Copp BR, Kramer RA et al (1993) Novel cytotoxic topoisomerase-Ii inhibiting pyrroloiminoquinones from Fijian sponges of the genus zyzzya. J Am Chem Soc 115:1632–1638

    Article  CAS  Google Scholar 

  13. Shinkre BA, Raisch KP, Fan LM, Velu SE (2007) Analogs of the marine alkaloid makaluvamines: synthesis, topoisomerase II inhibition, and anticancer activity. Bioorg Med Chem Lett 17:2890–2893

    Article  CAS  Google Scholar 

  14. Sékou Diomandé, Affoué Lucie Bédé, Soleymane Koné and El-Hadji Sawaliho Bamba (2018) Determination of protonation and methylation sites of neutral makaluvamines, relative stability and reactivity potential of the charged forms, Int J Innov Appl Stud, Vol. 25 No. 1 Dec., pp. 516-527

  15. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009

  16. Hohenberg, P. Kohn, W (1964) Inhomogeneous electron gas. Phys.Rev. 136, B864

    Article  Google Scholar 

  17. Koch, W, Holthausen, (1999) M.C.A in chemist’s guide to density fonctional theory 2nd Ed, Wiley-VCH,.Weinheim.

  18. Hunter CA (2004). Angew Chem Int Ed 43:5310

    Article  CAS  Google Scholar 

  19. Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995). Can J Chem 73:483

    Article  CAS  Google Scholar 

  20. Brinck, T. (1998) Theoretical and computational chemistry 5, 51

    Google Scholar 

  21. Kenny, P. W. (1994) J. Chem. Soc., Perkin Trans. 2, 199

  22. Murray and Politzer, WIREs Comput. Mol. Sci. 7, e1326 (2017)

  23. Bader RFW, Carroll MT, Cheeseman JR, Chang CJ (1987). Am Chem Soc 109:7968

    Article  CAS  Google Scholar 

  24. Arnaud V, Berthelot M, Evain M, Graton J, Le Questel J-Y (2007). Chem Eur J 13:1499

    Article  CAS  Google Scholar 

  25. Graton J, Berthelot M, Gal J-F, Laurence C, Lebreton J, Le Questel J-Y, Maria P-C, Robins RJ (2003). Org Chem 68:8208

    Article  CAS  Google Scholar 

  26. Le Questel J-Y, Boquet G, Berthelot M, Laurence C (2000). J Phys Chem B 104:11816

    Article  Google Scholar 

  27. Arunan et al, Pure Appl. Chem. 83, 1637-1641 (2011)

  28. Jansen HB, Ros P (1969). Chem Phys Lett 3:140

    Article  CAS  Google Scholar 

  29. Liu B, Mclean AD (1973). J Chem Phys 59:4557

    Article  CAS  Google Scholar 

  30. Boys SF, Bernadi F (1970). Mol Phys 19:553

    Article  CAS  Google Scholar 

  31. Xantheas SS (1996). JChem Phys 104:8821

    CAS  Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, MW Wong, C Gonzalez, JA. Pople, Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.

  33. Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT, Johnson ER, Keinan S (2010) Revealing noncovalent interactions. J Am Chem Soc 24:25

    Google Scholar 

  34. Desiraju, G., Steiner, T. (1999) The weak hydrogen bond: applications to structural chemistry and biology

  35. Rowland RS, Taylor R (1996). J Phys Chem 100:7384

    Article  CAS  Google Scholar 

  36. Bondi A (1964). J Phys Chem 68:441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soleymane Koné.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diomandé, S., Bédé, A.L., Koné, S. et al. Study of molecular interactions by hydrogen bond of charged forms of makaluvamines and complex stability with H2O and glutamic acid (Glu Ac) by the theory of the functional of density (B3LYP). J Mol Model 25, 344 (2019). https://doi.org/10.1007/s00894-019-4231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4231-0

Keywords

Navigation