Skip to main content
Log in

Structural and electronic properties of a CN fullerene with N = 20, 60, 80, 180, and 240

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, the structural and electronic properties of a CN fullerene with N = 20, 60, 80, 180, and 240 have been investigated using a sp3 tight-binding model. The analytical expressions for the calculation of the total number of carbon atoms, hexagons, pentagons, and bonds found within the geometrical structure of a CN fullerene have been developed and verified using the simulation, therefore proving the validation of both the simulation and analytical results. The simulation results show that the total number of carbon atoms within fullerene is equal to the value of N and the total number of hexagons, pentagons, and bonds within the structure of a fullerene increases with the increase in the value of N. Further, the electronic properties of these fullerenes have been identified with the help of their energy level diagrams obtained using the simulation. It has been observed that the C20 and C80 fullerenes are metallic because of their zero band gaps while the C60 fullerene is an insulator with a very wide band gap of 5 eV whereas the C180 and C240 fullerenes are semiconducting with band gaps of 1.43 eV and 1.05 eV, respectively. Finally, it has been observed from these studies that the metallic fullerenes are best suited for interconnects and the semiconducting fullerenes are bested suited as a channel material for designing high-performance nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM (1995) C60 thin film transistors. Appl Phys Lett 67:121–123

    CAS  Google Scholar 

  2. Haddon RC (1996) C70 thin film transistors. J Am Chem Soc 118:3041–3042

    CAS  Google Scholar 

  3. Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y (2003) Fabrication and characterization of C60 thin-film transistors with high field-effect mobility. Appl Phys Lett 82:4581–4583

    CAS  Google Scholar 

  4. Kanbara T, Shibata K, Fujiki S, Kubozono Y, Kashino S, Urisu T, Sakai M, Fujiwara A, Kumashiro R, Tanigaki K (2003) N-channel field effect transistors with fullerene thin films and their application to a logic gate circuit. Chem Phys Lett 379:223–229

    CAS  Google Scholar 

  5. Kobayashi S, Mori S, Iida S, Ando H, Takenobu T, Taguchi Y, Fujiwara A, Taninaka A, Shinohara H, Iwasa Y (2003) Conductivity and field effect transistor of La2@C80 metallofullerene. J Am Chem Soc 125:8116–8117

    CAS  PubMed  Google Scholar 

  6. Shibata K, Kubozono Y, Kanbara T, Hosokawa T, Fujiwara A, Ito Y, Shinohara H (2004) Fabrication and characteristics of C84 fullerene field-effect transistors. Appl Phys Lett 84:2572–2574

    CAS  Google Scholar 

  7. Vasconcelos RC, Aleixo VFP, Nero JD (2017) Organic field effect transistor composed by fullerene C60 and heterojunctions. Physica E 86:142–145

    CAS  Google Scholar 

  8. Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O'Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246

    PubMed  Google Scholar 

  9. Goldshleger NF (2001) Fullerenes and fullerene-based materials in catalysis. Fuller Sci Technol 9:255–280

    CAS  Google Scholar 

  10. Harneit W (2002) Fullerene-based electron-spin quantum computer. Phys Rev A 65:032322

    Google Scholar 

  11. Illescas BM, Martín N (2006) Fullerene-based electron acceptors. Comptes Rendus Chimie 9:1038–1050

    CAS  Google Scholar 

  12. Sharma M, Bhatiaa R, Gupta V, Chand S, Raghunathan P, Eswarana SV (2011) Soluble functionalised fullerenes for photovoltaics. Synth Met 161:844

    CAS  Google Scholar 

  13. García M, Guadarrama P, Ramos E, Fomine S (2011) Rectifying behavior of [60]fullerene charge transfer complexes: a theoretical study. Synth Met 161:2390–2396

    Google Scholar 

  14. Guo F, Xiao Z, Huang J (2013) Fullerene photodetectors with a linear dynamic range of 90 db enabled by a cross-linkable buffer layer. Adv Opt Mater 1:289–294

    Google Scholar 

  15. Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL (2013) Application of fullerenes in nanomedicine: An update. Nanomedicine 8:1191–1208

    CAS  PubMed  Google Scholar 

  16. Pilehvar S, Wael KD (2015) Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms. Biosensors 5:712–735

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lanzellotto C, Favero G, Antonelli ML, Tortolini C, Cannistraro S, Coppari E, Mazzei F (2014) Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications. Biosens Bioelectron 55:430–437

    CAS  PubMed  Google Scholar 

  18. Kuzmany H, Winter J, Burger B (1997) Polymeric fullerenes. Synth Met 85:1173–1177

    CAS  Google Scholar 

  19. Ko YG, Hahm SG, Murata K, Kim YY, Ree BJ, Song S, Michinobu T, Ree M (2014) New fullerene-based polymers and their electrical memory characteristics. Macromolecules 47:8154–8163

    CAS  Google Scholar 

  20. Li Z, Wong HC, Huang Z, Zhong H, Tan CH, Tsoi WC, Kim JS, Durrant JR, Cabral JT (2013). Nat Commun 4:2227

    PubMed  Google Scholar 

  21. Mohajeri A, Omidvar A (2015) Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells – a DFT study. Phys Chem Chem Phys 17:22367

    CAS  PubMed  Google Scholar 

  22. Zhang F, Inganäs O, Zhou Y, Vandewal K (2016) Development of polymer–fullerene solar cells. Natl Sci Rev 3:222–239

    CAS  Google Scholar 

  23. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60:Buckmister fullerene. Nature 318:162–163

    CAS  Google Scholar 

  24. Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Gasphase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407:60–63

    CAS  PubMed  Google Scholar 

  25. Sokolova S, Lüchow A, Anderson JB (2000) Energetics of carbon clusters C20 from all-electron quantum Monte Carlo calculations. Chem Phys Lett 323:229–233

    CAS  Google Scholar 

  26. Spagnolatti I, Bernasconi M, Benedek G (2002) Electron-phonon interaction in the solid form of the smallest fullerene C20. Europhys Lett 59:572–578

    CAS  Google Scholar 

  27. An YP, Yang CL, Wang MS, Ma XG, Wang DH (2009) First principles study of structure and quantum transport properties of C20 fullerene. J Chem Phys 131:024311

    PubMed  Google Scholar 

  28. An YP, Yang CL, Wang MS, Ma XG, Wang DH (2010) First principles study of transport properties of endohedral Li@C20 metallofullerene. Curr Appl Phys 10:260–265

    Google Scholar 

  29. Kroto HW (1987) The stability of the fullerene Cn, with 24, 28, 32, 36, 50, 60, and 70. Nature 329:529–531

    CAS  Google Scholar 

  30. Rabenau T, Simon A, Kremer RK, Sohmen E (1993) The energy gaps of fullerene C6o and C70 determined from the temperature dependent microwave conductivity. Z Phys B 90:69–72

    CAS  Google Scholar 

  31. Zhang RQ, Feng YQ, Lee ST, Bai CL (2004) Electrical transport and electronic delocalization of small fullerenes. J Phys Chem B 108:16636

    CAS  Google Scholar 

  32. Lee SM, Nicholls RJ, Nguyen-Manh D, Pettifor DG, Briggs GAD, Lazar S, Pankhurst DA, Cockayne DJH (2005) Electron energy loss spectra of C60 and C70 fullerenes. Chem Phys Lett 404:206–211

    CAS  Google Scholar 

  33. Małolepsza E, Witek HA (2007) Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20-C36. J Phys Chem A 111:6649–6657

    PubMed  Google Scholar 

  34. Kaur M, Sawhney RS, Engles D (2017) Ab-initio molecular characterization of nonclassical fullerenes cluster using two probe approach. J Mater Res 32:414–425

    CAS  Google Scholar 

  35. Dass D (2018) Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: a new 2D materials. Superlattice Microst 115:88–107

    CAS  Google Scholar 

  36. Dass D (2018) Structural parameters, electronic properties, and band gaps of a single walled carbon nanotube: a pz orbital tight binding study. Superlattice Microst 120:108–126

    CAS  Google Scholar 

  37. Wang BC, Chiu YN (1993) Geometry and orbital symmetry relationships of giant and hyperfullerenes: C240, C540, C960 and C1500. Synth Met 56:2949–2954

    CAS  Google Scholar 

  38. Forro L, Mihaly L (2001) Electronic properties of doped fullerenes. Rep Prog Phys 64:649–699

    CAS  Google Scholar 

  39. Cho K (2015) MSL Simulator

  40. Harrison WA (1999) World Scientific Publishing, Singapore

  41. Menon M, Subbaswamy KR (1991) Universal parameter tight-binding molecular dynamics: application to C60. Phys Rev Lett 67:3487–3490

    CAS  PubMed  Google Scholar 

  42. Menon M, Subbaswamy KR (1991) Transferable nonorthogonal tight-binding scheme for silicon. Phys Rev B 50:11577

    Google Scholar 

  43. Menon M (1998) A transferable nonorthogonal tight-binding scheme for germanium. J Phys Condens Matter 10:10991

    CAS  Google Scholar 

  44. Vogl P, Hjalmarsons HP, Dow JD (1983) A semi-empirical tight-binding theory of the electronic structure of semiconductors. J Phys Chem Solids 44:365–378

    CAS  Google Scholar 

  45. Tomanek D, Schluter MA (1987) Structure and bonding of small semiconductor clusters. Phys Rev B 36:1208–1217

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devi Dass.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dass, D. Structural and electronic properties of a CN fullerene with N = 20, 60, 80, 180, and 240. J Mol Model 26, 9 (2020). https://doi.org/10.1007/s00894-019-4207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4207-0

Keywords

Navigation