Skip to main content
Log in

Effect of CO2 and H2O on the behavior of shale gas confined inside calcite [104] slit-like nanopore: a molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of CO2 and H2O on the behavior of shale gas confined in calcite [104] slit-like nanopore is investigated using molecular dynamics simulation technique. The study is relevant as the advancement of enhance gas recovery (EGR) technologies requires in-depth atomistic understanding of the hydrocarbons, water, carbon dioxide, and other fracturing fluid constituents inside the nanopores of shale gas reservoirs. We are considering carbon dioxide (CO2) because it is an attractive displacing agent for enhanced gas recovery and has the potential to be an “exotic” fracturing fluid. Water (H2O) is considered as it is the major component of water-based fracturing fluids. The structural and dynamical properties of the confined species are computed. The results indicate that the presence of CO2 and H2O in the nanopore drastically affects the behavior of shale gas. The shale gas molecules that were tightly packed near the pore wall displaced towards the center by CO2 and H2O molecules. A new layer of carbon dioxide and water is formed near the pore wall. Further investigation reveals that CO2 molecules align themselves flat near the surface, whereas H2O molecules have directional orientation with oxygen atoms of water molecules pointing towards to wall. The predicted lateral (in-plane) self-diffusion coefficient values of methane, ethane, carbon dioxide and water indicate complex dynamics inside the pore. The investigation shows the fastest dynamics for methane gas followed by ethane. Both CO2 and H2O are almost immobile. The increase in temperature in the range from 300 to 450 K does not appear to have any significant impact on the behavior of the molecules inside the pore. The adsorption energies show that both CO2 and H2O have stronger interactions with calcite [104] surface than shale gas molecules.

TOC- Shale gas extraction process is shown on the left side. In the right side is a calcite [104] nanopore (H = 2.2 nm) filled with shale gas and fracking chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kargbo DM, Wilhelm RG, Campbell DJ (2010) Natural gas plays in the Marcellus shale: challenges and potential opportunities. Environ Sci Technol 44:5679–5684

    CAS  PubMed  Google Scholar 

  2. Kinnaman TC (2011) The economic impact of shale gas extraction: a review of existing studies. Ecol Econ 70:1243–1249

    Google Scholar 

  3. Weber CL, Clavin C (2012) Life cycle carbon footprint of shale gas: review of evidence and implications. Environ Sci Technol 46:5688–5695

    CAS  PubMed  Google Scholar 

  4. Mohan J, Griffin WM, Chris H, Paulina J, Jeanne V, Aranya V (2011) Life cycle greenhouse gas emissions of Marcellus shale gas. Environ Res Lett 6:034014

    Google Scholar 

  5. Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol 48:8334–8348

    CAS  PubMed  Google Scholar 

  6. Gallegos TJ, Varela BA, Haines SS, Engle MA (2015) Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resour Res 51:5839–5845

    CAS  PubMed  PubMed Central  Google Scholar 

  7. King GE (2010) Thirty years of gas shale fracturing: what have we learned? SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Florence, Italy, pp. 50

  8. Howarth RW, Ingraffea A, Engelder T (2011) Should fracking stop? Nature 477:271

    CAS  PubMed  Google Scholar 

  9. Jenner S, Lamadrid AJ (2013) Shale gas vs. coal: policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States. Energy Policy 53:442–453

    Google Scholar 

  10. Arthur JD, Bohm BK, Coughlin BJ, Layne MA, Cornue D (2009) Evaluating the environmental implications of hydraulic fracturing in shale gas reservoirs, SPE Americas E&P Environmental and Safety Conference, Society of Petroleum Engineers, San Antonio, Texas, pp. 15

  11. Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science 340:1235009

    CAS  PubMed  Google Scholar 

  12. Nicot J-P, Scanlon BR (2012) Water use for shale-gas production in Texas. US Environ Sci Technol 46:3580–3586

    CAS  Google Scholar 

  13. Lin W, Bergquist AM, Mohanty K, Werth CJ (2018) Environmental impacts of replacing slickwater with low/no-water fracturing fluids for shale gas recovery. ACS Sustain Chem Eng 6:7515–7524

    CAS  Google Scholar 

  14. Gregory KB, Vidic RD, Dzombak DA (2011) Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7:181–186

    Google Scholar 

  15. Rozell DJ, Reaven SJ (2012) Water pollution risk associated with natural gas extraction from the Marcellus shale. Risk Anal 32:1382–1393

    PubMed  Google Scholar 

  16. Scanlon BR, Reedy RC, Nicot JP (2014) Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. Environ Sci Technol 48:12386–12393

    CAS  PubMed  Google Scholar 

  17. Pei P, Ling K, He J, Liu Z (2015) Shale gas reservoir treatment by a CO2-based technology. J Nat Gas Sci Eng 26:1595–1606

    CAS  Google Scholar 

  18. Wilkins R, Menefee AH, Clarens AF (2016) Environmental life cycle analysis of water and CO2-based fracturing fluids used in unconventional gas production. Environ Sci Technol 50:13134–13141

    CAS  PubMed  Google Scholar 

  19. Gupta DVS (2003) Field application of unconventional foam technology: extension of liquid CO2 technology, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Denver, pp. 4

  20. Zhang Z, Mao J, Yang X, Zhao J, Smith GS (2019) Advances in waterless fracturing technologies for unconventional reservoirs. Energy Sources, Part A 41:237–251

    Google Scholar 

  21. Middleton RS, Carey JW, Currier RP, Hyman JD, Kang Q, Karra S, Jiménez-Martínez J, Porter ML, Viswanathan HS (2015) Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl Energy 147:500–509

    CAS  Google Scholar 

  22. Mao J, Wang D, Yang X, Zhang Y, Zhao J, Li Y, Zhao J (2016) Application and optimization: non-aqueous fracturing fluid from phosphate ester synthesized with single alcohol. J Pet Sci Eng 147:356–360

    CAS  Google Scholar 

  23. Phillips AM, Couchman DD, Wilke JG (1987) Successful field application of high-temperature rheology of CO2 foam fracturing fluids, Low Permeability Reservoirs Symposium, Society of Petroleum Engineers, Denver, Colorado, p. 6

  24. Ishida T, Aoyagi K, Niwa T, Chen Y, Murata S, Chen Q, Nakayama Y (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophys Res Lett 39

    Google Scholar 

  25. Finkel M, Hays J, Law A (2013) The shale gas boom and the need for rational policy. Am J Public Health 103:1161–1163

    PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Lu Y, Tang J, Zhou Z, Liao Y (2017) Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 190:370–378

    CAS  Google Scholar 

  27. Jiang Y, Luo Y, Lu Y, Qin C, Liu H (2016) Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale. Energy 97:173–181

    CAS  Google Scholar 

  28. Ao X, Lu Y, Tang J, Chen Y, Li H (2017) Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2. J CO2 Util 20:274–281

    CAS  Google Scholar 

  29. Zou Y, Li S, Ma X, Zhang S, Li N, Chen M (2018) Effects of CO2–brine–rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs. J Nat Gas Sci Eng 49:157–168

    CAS  Google Scholar 

  30. Rezaee R, Saeedi A, Iglauer S, Evans B (2017) Shale alteration after exposure to supercritical CO2. Int J Greenhouse Gas Control 62:91–99

    CAS  Google Scholar 

  31. Heller R, Zoback M (2014) Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J Unconvent Oil Gas Resourc 8:14–24

    Google Scholar 

  32. Hung FR, Bale S (2009) Faceted nanoparticles in a nematic liquid crystal: defect structures and potentials of mean force. Mol Simul 35:822–834

    CAS  Google Scholar 

  33. Sengia J, James A, Singh R, Bale S (2019) Size effect of oscillating columns on mixing: a CFD study. Eur J Mech B Fluids 77:230–238

    Google Scholar 

  34. Tiwari SS, Bale S, Patwardhan AW, Nandakumar K, Joshi JB (2019) Insights into the physics of dominating frequency modes for flow past a stationary sphere: direct numerical simulations. Phys Fluids 31:045108

    Google Scholar 

  35. Tiwari SS, Pal E, Bale S, Minocha N, Patwardhan AW, Nandakumar K, Joshi JB (2019) Flow past a single stationary sphere, 1. Experimental and numerical techniques, Powder Technology

  36. Bale S, Tiwari S, Sathe M, Berrouk AS, Nandakumar K, Joshi J (2018) Direct numerical simulation study of end effects and D/d ratio on mass transfer in packed beds. Int J Heat Mass Transf 127:234–244

    Google Scholar 

  37. Berrouk AS, Huang A, Bale S, Thampi P, Nandakumar K (2017) Numerical simulation of a commercial FCC regenerator using multiphase particle-in-cell methodology (MP-PIC). Adv Powder Technol 28:2947–2960

    CAS  Google Scholar 

  38. Bale S, Clavin K, Sathe M, Berrouk AS, Knopf FC, Nandakumar K (2017) Mixing in oscillating columns: experimental and numerical studies. Chem Eng Sci 168:78–89

    CAS  Google Scholar 

  39. Bale S, Sathe M, Ayeni O, Berrouk AS, Joshi J, Nandakumar K (2017) Spatially resolved mass transfer coefficient for moderate Reynolds number flows in packed beds: wall effects. Int J Heat Mass Transf 110:406–415

    Google Scholar 

  40. Berrouk AS, Pornsilph C, Bale SS, Du Y, Nandakumar K (2017) Simulation of a large-scale FCC riser using a combination of MP-PIC and four-lump oil-cracking kinetic models. Energy Fuel 31:4758–4770

    CAS  Google Scholar 

  41. Bale S, Liyana-Arachchi TP, Hung FR (2016) Molecular dynamics simulation of single-walled carbon nanotubes inside liquid crystals. Mol Simul 42:1242–1248

    CAS  Google Scholar 

  42. Bale S (2016) Torque transmitted by the nematic liquid crystal to the faceted nanoparticles. World J Model Simulat 12:243–258

    Google Scholar 

  43. Bale SS (2012) Computer simulations of faceted nanoparticles and carbon nanotubes in liquid crystals. Doctoral dissertation, Louisiana StateUniversity 645

  44. Tiwari S, Bale S, Patwardhan AW, Nandakumar K, Joshi JB (2019) Insights into the physics of dominating frequency modes for flow past a stationary sphere: direct numerical simulations, 31, 045108

  45. Bale S, Tiwari SS, Nandakumar K, Joshi JB (2019) Effect of Schmidt number and D/d ratio on mass transfer through gas-solid and liquid-solid packed beds: direct numerical simulations. Powder Technology 354, 529-539

    CAS  Google Scholar 

  46. Gubbins KE, Long Y, Śliwinska-Bartkowiak M (2014) Thermodynamics of confined nano-phases. J Chem Thermodyn 74:169–183

    CAS  Google Scholar 

  47. Striolo A, Michaelides A, Joly L (2016) The carbon-water interface: modeling challenges and opportunities for the water-energy Nexus. Ann Rev Chem Biomol Eng 7:533–556

    CAS  Google Scholar 

  48. Gubbins KE, Liu Y-C, Moore JD, Palmer JC (2011) The role of molecular modeling in confined systems: impact and prospects. Phys Chem Chem Phys 13:58–85

    CAS  PubMed  Google Scholar 

  49. Striolo A (2016) Interfacial water studies and their relevance for the energy sector. Mol Phys 114:2615–2626

    CAS  Google Scholar 

  50. Striolo A, Cole DR (2017) Understanding shale gas: recent progress and remaining challenges. Energy Fuel 31:10300–10310

    CAS  Google Scholar 

  51. Sylwester F, Artur PT, Piotr AG, Piotr K, Peter JFH (2014) Folding of graphene slit like pore walls—a simple method of improving CO 2 separation from mixtures with CH 4 or N 2. J Phys Condens Matter 26:485006

    Google Scholar 

  52. Wu H, Chen J, Liu H (2015) Molecular dynamics simulations about adsorption and displacement of methane in carbon Nanochannels. J Phys Chem C 119:13652–13657

    CAS  Google Scholar 

  53. Yuan Q, Zhu X, Lin K, Zhao Y-P (2015) Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide. Phys Chem Chem Phys 17:31887–31893

    CAS  PubMed  Google Scholar 

  54. Lu X, Jin D, Wei S, Zhang M, Zhu Q, Shi X, Deng Z, Guo W, Shen W (2015) Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale 7:1002–1012

    CAS  PubMed  Google Scholar 

  55. Bucior BJ, Chen D-L, Liu J, Johnson JK (2012) Porous carbon nanotube membranes for separation of H2/CH4 and CO2/CH4 mixtures. J Phys Chem C 116:25904–25910

    CAS  Google Scholar 

  56. Zhai Z, Wang X, Jin X, Sun L, Li J, Cao D (2014) Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths. Energy Fuel 28:7467–7473

    CAS  Google Scholar 

  57. Le T, Striolo A, Cole DR (2015) CO2–C4H10 mixtures simulated in silica slit pores: relation between structure and dynamics. J Phys Chem C 119:15274–15284

    CAS  Google Scholar 

  58. Badmos SB, Striolo A, Cole DR (2018) Aqueous hydrogen sulfide in slit-shaped silica nanopores: confinement effects on solubility, structural, and dynamical properties. J Phys Chem C 122:14744–14755

    CAS  Google Scholar 

  59. Wang S, Feng Q, Javadpour F, Yang Y-B (2016) Breakdown of fast mass transport of methane through calcite nanopores. J Phys Chem C 120:14260–14269

    CAS  Google Scholar 

  60. Mohammed S, Gadikota G (2018) The effect of hydration on the structure and transport properties of confined carbon dioxide and methane in calcite Nanopores. Front Energy Res 6

  61. Brasili J, Fox K, Badamo D, Berghe G, Khanal R, Singh R (2018) Molecular dynamics simulation of shale gas confined inside slit-like calcite [104] nanopore. Molecular Simulation 45 (2), 104–110

    Google Scholar 

  62. Xiong J, Liu K, Liu X, Liang L, Zeng Q (2016) Molecular simulation of methane adsorption in slit-like quartz pores. RSC Adv 6:110808–110819

    CAS  Google Scholar 

  63. Papavasileiou KD, Michalis VK, Peristeras LD, Vasileiadis M, Striolo A, Economou IG (2018) Molecular dynamics simulation of water-based fracturing fluids in kaolinite slit pores. J Phys Chem C 122:17170–17183

    CAS  Google Scholar 

  64. Sun H, Zhao H, Qi N, Li Y (2017) Molecular insights into the enhanced shale gas recovery by carbon dioxide in kerogen slit nanopores. J Phys Chem C 121:10233–10241

    CAS  Google Scholar 

  65. Pathak M, Huang H, Meakin P, Deo M (2018) Molecular investigation of the interactions of carbon dioxide and methane with kerogen: application in enhanced shale gas recovery. J Nat Gas Sci Eng 51:1–8

    CAS  Google Scholar 

  66. Wang T, Tian S, Li G, Sheng M, Ren W, Liu Q, Zhang S (2018) Molecular simulation of CO2/CH4 competitive adsorption on shale kerogen for CO2 sequestration and enhanced gas recovery. J Phys Chem C 122:17009–17018

    CAS  Google Scholar 

  67. Huang L, Ning Z, Wang Q, Qi R, Zeng Y, Qin H, Ye H, Zhang W (2018) Molecular simulation of adsorption behaviors of methane, carbon dioxide and their mixtures on kerogen: effect of kerogen maturity and moisture content. Fuel 211:159–172

    CAS  Google Scholar 

  68. Tian S, Dong X, Wang T, Zhang R, Zhang P, Sheng M, Cheng S, Zhao H, Fei L, Street J, Chen Y, Xu Q (2018) Surface properties of organic kerogen in continental and marine shale. Langmuir 34:13882–13887

    CAS  PubMed  Google Scholar 

  69. Ho TA, Wang Y, Xiong Y, Criscenti LJ (2018) Differential retention and release of CO2 and CH4 in kerogen nanopores: implications for gas extraction and carbon sequestration. Fuel 220:1–7

    CAS  Google Scholar 

  70. Franco LFM, Castier M, Economou IG (2016) Anisotropic parallel self-diffusion coefficients near the calcite surface: a molecular dynamics study. J Chem Phys 145:084702

    PubMed  Google Scholar 

  71. Bui T, Phan A, Cole DR, Striolo A (2017) Transport mechanism of guest methane in water-filled nanopores. J Phys Chem C 121:15675–15686

    CAS  Google Scholar 

  72. Sun H, Zhao H, Qi N, Li Y (2017) Simulation to enhance shale gas recovery using carbon dioxide in silica nanopores with different sizes. Energy Technol 5:2065–2071

    CAS  Google Scholar 

  73. Sun H, Zhao H, Qi N, Qi X, Zhang K, Sun W, Li Y (2016) Mechanistic insight into the displacement of CH4 by CO2 in calcite slit nanopores: the effect of competitive adsorption. RSC Adv 6:104456–104462

    CAS  Google Scholar 

  74. Sun H, Zhao H, Qi N, Qi X, Zhang K, Li Y (2017) Molecular insight into the micro-behaviors of CH4 and CO2 in montmorillonite slit-nanopores. Mol Simul 43:1004–1011

    CAS  Google Scholar 

  75. Sun H, Zhao H, Qi N, Li Y (2017) Effects of surface composition on the microbehaviors of CH4 and CO2 in slit-nanopores: a simulation exploration. ACS Omega 2:7600–7608

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sui H, Yao J, Zhang L (2015) Molecular simulation of shale gas adsorption and diffusion in clay nanopores. Computation 3:687–700

    CAS  Google Scholar 

  77. Striolo A, Chialvo AA, Cummings PT, Gubbins KE (2003) Water adsorption in carbon-slit nanopores. Langmuir 19:8583–8591

    CAS  Google Scholar 

  78. Striolo A, Chialvo AA, Gubbins KE, Cummings PT (2005) Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J Chem Phys 122:234712

    CAS  PubMed  Google Scholar 

  79. Barton SS, Evans MJB, MacDonald JAF (1991) The adsorption of water vapor by porous carbon. Carbon 29:1099–1105

    CAS  Google Scholar 

  80. McCallum CL, Bandosz TJ, McGrother SC, Müller EA, Gubbins KE (1999) A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment. Langmuir 15:533–544

    CAS  Google Scholar 

  81. Müller EA, Rull LF, Vega LF, Gubbins KE (1996) Adsorption of water on activated carbons: a molecular simulation study. J Phys Chem 100:1189–1196

    Google Scholar 

  82. Slasli AM, Jorge M, Stoeckli F, Seaton NA (2003) Water adsorption by activated carbons in relation to their microporous structure. Carbon 41:479–486

    CAS  Google Scholar 

  83. Cao T, Song Z, Wang S, Cao X, Li Y, Xia J (2015) Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China. Mar Pet Geol 61:140–150

    CAS  Google Scholar 

  84. Bazilevskaya E, Rother G, Mildner DFR, Pavich M, Cole D, Bhatt MP, Jin L, Steefel CI, Brantley SL (2015) How oxidation and dissolution in diabase and granite control porosity during weathering. Soil Sci Soc Am J 79:55–73

    CAS  Google Scholar 

  85. Yingjie L, Xiaoyuan L, Yuelong W, Qingchun Y (2015) Effects of composition and pore structure on the reservoir gas capacity of carboniferous shale from Qaidam Basin, China. Mar Pet Geol 62:44–57

    Google Scholar 

  86. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    CAS  Google Scholar 

  87. Bullin KA, Krouskop PE (2009) Compositional variety complicates processing plans for US shale gas. Oil and Gas Journal 107(10):50–55

  88. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    CAS  Google Scholar 

  89. Van Cuong P, Kuznetsova T, Kvamme B, Jensen B (2012) Adsorption energy and stability of H2O and CO2 on calcite effect by short-range force field parameters and temperature. Proceedings of the 6th international conference on Applied Mathematics, Simulation, Modelling, 978-1-61804-076-3

  90. Potoff JJ, Siepmann JI (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AICHE J 47:1676–1682

    CAS  Google Scholar 

  91. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration, in: B. Pullman (Ed.), Intermolecular forces: proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry held in Jerusalem, Israel, April 13–16, 1981, Springer Netherlands, Dordrecht, pp. 331–342

  92. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126

    PubMed  Google Scholar 

  93. Bussi G, Zykova-Timan T, Parrinello M (2009) Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J Chem Phys 130

    PubMed  Google Scholar 

  94. Darden T, York D, Pedersen L (1993) Particle mesh Ewald - an n.log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  95. Ding H, Shen X, Chen C, Zhang X (2016) Molecular dynamics simulations of simple aromatic compounds adsorption on single-walled carbon nanotubes. RSC Adv 6:80972–80980

    CAS  Google Scholar 

  96. Canongia Lopes JN, Deschamps J, Padua AAH (2004) Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B 108:2038–2047

    Google Scholar 

  97. Sui H, Yao J, Zhang L (2015) Molecular simulation of shale gas adsorption and diffusion in clay nanopores. Computation 3:687

    CAS  Google Scholar 

  98. Santos MS, Franco LFM, Castier M, Economou IG (2018) Molecular dynamics simulation of n-alkanes and CO2 confined by calcite nanopores. Energy Fuel 32:1934–1941

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Pittsburgh Supercomputer and the Center for Research Computing at the University of Pittsburgh (Pitt-CRC) for providing high-performance computational resources for this research. We thank Dr. Shivkumar Bale, Assistant Professor in the Department of Chemical at UPJ (University of Pittsburgh at Johnstown), for a very fruitful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berghe, G., Kline, S., Burket, S. et al. Effect of CO2 and H2O on the behavior of shale gas confined inside calcite [104] slit-like nanopore: a molecular dynamics simulation study. J Mol Model 25, 293 (2019). https://doi.org/10.1007/s00894-019-4180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4180-7

Keywords

Navigation