Skip to main content
Log in

Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, the possible interactions between 5-fluorouracil (5FU) as an anticancer drug and gallium nitride (Ga12N12) nanocage (NC) in aqueous solution have been investigated using DFT/CPCM/B3LYP-D/6-31G(d,p) level of theory. Eleven different orientations were used to mimic the 5FU adsorbed on Ga12N12 (5FU@GaNNC). To investigate the interaction mechanism between the two components, the adsorption energies and thermodynamic parameters, the electronic properties such as the energies and orbitals distribution of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), the HOMO-LUMO energy gaps (Eg), the density of states (DOS), partial DOS (PDOS), and the molecular electrostatic potential (MEP) have been calculated and compared. The natural bond orbitals (NBOs) and the quantum theory of atoms in molecules (QTAIM) calculations have been applied for understanding chemical interactions and chemical bonding. Additionally, some quantum molecular descriptors were calculated for the understanding of molecular reactivity. Main results revealed that (1) the key factor that leads to stabilization of the formed complex/s is the relocation of one of the H atoms that originally belonging to one of the N atoms in 5FU to one of the nearest Ga atoms in GaNNC and (2) the adsorption energies for the eleven adsorbed systems are relatively larger compared with reported similar systems indicating from a theoretical point of view, a probable chemisorption type of adsorption and the privilege of GaNNC as a carrier for 5FU drug.

Simulation of the most stable adsorbed system of 5-fluorouracil anticancer drug on Gallium nitride nanocage

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jahani M et al (2019) L-arginine/5-fluorouracil combination treatment approaches cells selectively: rescuing endothelial cells while killing MDA-MB-468 breast cancer cells. Food Chem Toxicol 123:399–411

    Article  CAS  Google Scholar 

  2. Milczarek M et al (2018) Autophagic cell death and premature senescence: new mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line. Food Chem Toxicol 111:1–8

    Article  CAS  Google Scholar 

  3. Metterle L, Nelson C, Patel N (2016) Intralesional 5-fluorouracil (FU) as a treatment for nonmelanoma skin cancer (NMSC): a review. J Am Acad Dermatol 74(3):552–557

    Article  CAS  Google Scholar 

  4. Leon O et al (2015) Phase I study of cetuximab in combination with 5-fluorouracil, mitomycin C and radiotherapy in patients with locally advanced anal cancer. Eur J Cancer 51(18):2740–2746

    Article  CAS  Google Scholar 

  5. Uetsuka H et al (2003) Inhibition of inducible NF-κB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res 289(1):27–35

    Article  CAS  Google Scholar 

  6. Chandran SP et al (2017) Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer. J Cancer Res Pract 4(2):45–48

    Article  Google Scholar 

  7. Sauraj et al (2019) Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. Int J Biol Macromol 128:204–213

    Article  CAS  Google Scholar 

  8. Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Article  Google Scholar 

  9. Ali Z, Savas B (2013) Stability of GaN nanocages. EPL (Europhys Lett) 103(1):16003

    Article  Google Scholar 

  10. Javan MB et al (2016) A DFT study on the interaction between 5-fluorouracil and B12N12 nanocluster. RSC Adv 6(106):104513–104521

    Article  CAS  Google Scholar 

  11. Ravaei I, Haghighat M, Azami SM (2019) A DFT, AIM and NBO study of isoniazid drug delivery by MgO nanocage. Appl Surf Sci 469:103–112

    Article  CAS  Google Scholar 

  12. Zhu Y-C et al (2004) Hollow boron nitride (BN) Nanocages and BN-Nanocage-encapsulated nanocrystals. Chem Eur J 10(15):3667–3672

    Article  CAS  Google Scholar 

  13. Bezi Javan M et al (2016) Interaction of B12N12 nano-cage with cysteine through various functionalities: a DFT study. Superlattice Microst 100:24–37

    Article  CAS  Google Scholar 

  14. Hosseinian A et al (2017) A density functional theory study on the interaction between 5-fluorouracil drug and C24 fullerene. J Clust Sci 28(5):2681–2692

    Article  CAS  Google Scholar 

  15. Hazrati MK, Javanshir Z, Bagheri Z (2017) B24N24 fullerene as a carrier for 5-fluorouracil anti-cancer drug delivery: DFT studies. J Mol Graph Model 77:17–24

    Article  CAS  Google Scholar 

  16. Frisch MJ (2009) Gaussian 09 programmer’s reference. Gaussian

  17. Dennington R, Keith T, Millam J (2009) GaussView. In: Mission S (ed) Semichem Inc: KS

  18. Zhurko G, Zhurko D (2009) Chemcraft program, Academic version 1.8

  19. Baei MT, Tazikeh Lemeski E, Soltani A (2017) DFT study of the adsorption of H2O2 inside and outside Al12N12 nano-cage. Russ J Phys Chem A 91(8):1527–1534

    Article  CAS  Google Scholar 

  20. Baei MT et al (2014) A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages. Phys B Condens Matter 444:6–13

    Article  CAS  Google Scholar 

  21. Shayan K, Nowroozi A (2018) Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study. Appl Surf Sci 428:500–513

    Article  CAS  Google Scholar 

  22. Hazrati MK, Bagheri Z, Bodaghi A (2017) Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies. Phys E: Low-Dimens Syst Nanostruct 89:72–76

    Article  CAS  Google Scholar 

  23. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  25. Duverger E et al (2014) Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Phys Chem Chem Phys 16(34):18425–18432

    Article  CAS  Google Scholar 

  26. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  27. Abdolahi N et al (2018) Adsorption of celecoxib on B12N12 fullerene: spectroscopic and DFT/TD-DFT study. Spectrochim Acta A Mol Biomol Spectrosc 204:348–353

    Article  CAS  Google Scholar 

  28. Gorelsky SI (2015) Program for molecular orbital analysis

  29. Gorelsky SI, Lever ABP (2001). J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  30. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  31. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  32. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121(8):3405–3416

    Article  CAS  Google Scholar 

  33. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1(1):70–77

    Article  Google Scholar 

  34. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132(11):114110

    Article  Google Scholar 

  35. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  36. Blicharska B, Kupka T (2002) Theoretical DFT and experimental NMR studies on uracil and 5-fluorouracil. J Mol Struct 613(1):153–166

    Article  CAS  Google Scholar 

  37. Beheshtian J, Ravaei I (2016) Hydrogen storage by BeO nano-cage: a DFT study. Appl Surf Sci 368:76–81

    Article  CAS  Google Scholar 

  38. Xu H et al (2018) Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs. Theor Chem Accounts 137(7):104

    Article  Google Scholar 

  39. Soltani A et al (2015) A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J Phys Chem Solids 86:57–64

    Article  CAS  Google Scholar 

  40. Vatanparast M, Shariatinia Z (2018) AlN and AlP doped graphene quantum dots as novel drug delivery systems for 5-fluorouracil drug: theoretical studies. J Fluor Chem 211:81–93

    Article  CAS  Google Scholar 

  41. Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  42. Vatanparast M, Shariatinia Z (2018) Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Struct Chem 29(5):1427–1448

    Article  CAS  Google Scholar 

  43. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev: Comput Mol Sci 2(1):1–42

    CAS  Google Scholar 

  44. Mahdavifar Z, Poulad M (2014) Theoretical prediction of ozone sensing using pristine and endohedral metalloboron B80 fullerenes. Sensors Actuators B Chem 205:26–38

    Article  CAS  Google Scholar 

  45. Du J et al (2016) The hydrogen storage on heptacoordinate carbon motif CTi72+. Int J Hydrog Energy 41(26):11301–11307

    Article  CAS  Google Scholar 

  46. Soltani A et al (2017) Interaction of hydrogen with Pd- and co-decorated C24 fullerenes: density functional theory study. Synth Met 234:1–8

    Article  CAS  Google Scholar 

  47. Galy J et al (2017) Stereochemistry of nitrogen E lone pair in NH3E, NOFE, N2O3E2, AgNO2E, and NCl3E. C R Chim 20(4):446–459

    Article  CAS  Google Scholar 

  48. Soltani A et al (2018) Adsorption of chemical warfare agents over C24 fullerene: effects of decoration of cobalt. J Alloys Compd 735:2148–2161

    Article  CAS  Google Scholar 

  49. Vijayakumar B, Kannappan V, Sathyanarayanamoorthi V (2016) DFT analysis and spectral characteristics of celecoxib a potent COX-2 inhibitor. J Mol Struct 1121:16–25

    Article  CAS  Google Scholar 

  50. Soltani A et al (2018) Theoretical studies of hydrazine detection by pure and Al defected MgO nanotubes. Phys E: Low-Dimens Syst Nanostruct 97:239–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nuha Wazzan acknowledges King Abdulaziz University’s High-Performance Computing Center (Aziz Supercomputer) (http://hpc.kau.edu.sa) for supporting the computation for the work described in this paper.

Funding

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. 397-247-1440. The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuha Wazzan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazzan, N., Soliman, K.A. & Halim, W.S.A. Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug. J Mol Model 25, 265 (2019). https://doi.org/10.1007/s00894-019-4147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4147-8

Keywords

Navigation