Skip to main content
Log in

Analysis of lowest energy transitions at TD-DFT of pyrene in vacuum and solvent

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons are present in interstellar medium and trapped in water ice. Among these compounds, pyrene has a controversial theoretical excitation spectrum. We carried out time-dependent density functional theory, including the long-range correction functionals, with the aim to help to understand the inversion of the first two UV bands of lower energies. The pyrene molecule was optimized at TD-DFT functionals with Def2svp basis set. The spectrum of pyrene molecule was calculated using implicit and explicit solvent models. The explicit solvent effect was studied, including a cluster of 51 water molecules. The implicit solvent PCM model was used with water and benzene as solvents. CAM-B3LYP and ωB97XD give correct band positions and the ω parameter was also optimized. NBO and frontier molecular orbitals were used to study the UV band inversion.

Analysis of frontier orbitals involved in the lowest energy transitions at TD-DFT of pyrene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Limão-Vieira P, Anzai K, Kato H, Hoshino M, Da Silva FF, Duflot D, Mogi D, Tanioka T, Tanaka H (2012) Electronic excitation to singlet states of 1,3-C4F6,c-C4F6 and 2-C4F6 by Electron impact - Electron energy-loss spectroscopy and ab initio calculations. J Phys Chem A 116:10529–10538. https://doi.org/10.1021/jp307599y

    Article  CAS  PubMed  Google Scholar 

  2. Bouwman J, Cuppen HM, Allamandola LJ, Linnartz H (2011) VUV photochemistry of PAHs trapped in interstellar water ice. EAS Publ Ser 46:251–256. https://doi.org/10.1051/eas/1146027

    Article  CAS  Google Scholar 

  3. Hardegree-Ullman EE, Gudipati MS, Boogert ACA, Lignell H, Allamandola LJ, Stapelfeldt KR, Werner M (2014) Laboratory determination of the infrared band strengths of pyrene frozen in water ice: implications for the composition of interstellar ices. Astrophys J 784:172. https://doi.org/10.1088/0004-637x/784/2/172

    Article  Google Scholar 

  4. Barone V, Biczysko M, Puzzarini C (2015) Quantum chemistry meets spectroscopy for astrochemistry: increasing complexity toward prebiotic molecules. Acc Chem Res 48:1413–1422. https://doi.org/10.1021/ar5003285

    Article  CAS  PubMed  Google Scholar 

  5. Freidzon AY, Valiev RR, Berezhnoy AA (2014) Ab initio simulation of pyrene spectra in water matrices. RSC Adv 4:42054–42065. https://doi.org/10.1039/c4ra05574h

    Article  CAS  Google Scholar 

  6. Clairemidi J, Bréchignac P, Moreels G, Pautet D (2004) Tentative identification of pyrene as a polycyclic aromatic molecule in UV spectra of comet P/Halley: an emission from 368 to 384 nm. Planet Space Sci 52:761–772. https://doi.org/10.1016/j.pss.2003.08.029

    Article  CAS  Google Scholar 

  7. Kerkines ISK, Petsalakis ID, Theodorakopoulos G, Klopper W (2009) Low-lying absorption and emission spectra of pyrene, 1,6-dithiapyrene, and tetrathiafulvalene: a comparison between ab initio and time-dependent density functional methods. J Chem Phys 131:224315. https://doi.org/10.1063/1.3271347

    Article  CAS  PubMed  Google Scholar 

  8. Mangle EA, Topp MR (1986) Excited-state dynamics of jet-cooled pyrene and some molecular complexes. J Phys Chem 90:802–807. https://doi.org/10.1021/j100277a020

    Article  CAS  Google Scholar 

  9. Baba H, Aoi M (1973) Vapor-phase fluorescence spectra from the second excited singlet state of pyrene and its derivatives. J Mol Spectrosc 46:214–222. https://doi.org/10.1016/0022-2852(73)90037-4

    Article  CAS  Google Scholar 

  10. Halasinski TM, Salama F, Allamandola LJ (2005) Investigation of the ultraviolet, visible, and near-infrared absorption spectra of hydrogenated polycyclic aromatic hydrocarbons and their cations. Astrophys J 628:555–566. https://doi.org/10.1086/430631

    Article  CAS  Google Scholar 

  11. Roos MK, Reiter S, de Vivie-Riedle R (2018) Ultrafast relaxation from 1La to 1Lb in pyrene: a theoretical study. Chem Phys 515:586–595. https://doi.org/10.1016/j.chemphys.2018.08.002

    Article  CAS  Google Scholar 

  12. D’Abramo M, Aschi M, Amadei A (2015) Theoretical calculation of the pyrene emission properties in different solvents. Chem Phys Lett 639:17–22. https://doi.org/10.1016/j.cplett.2015.08.070

    Article  CAS  Google Scholar 

  13. Bito Y, Shida N, Toru T (2000) Ab initio MRSD-CI calculations of the ground and the two lowest-lying excited states of pyrene. Chem Phys Lett 328:310–315. https://doi.org/10.1016/S0009-2614(00)00936-2

    Article  CAS  Google Scholar 

  14. Brédas JL, Street GB (1989) Theoretical studies of the complexes of benzene and pyrene with water and of benzene with formic acid, ammonia, and methane. J Chem Phys 90:7291–7299. https://doi.org/10.1063/1.456207

    Article  Google Scholar 

  15. Estévez-Fregoso M, Hernández-Trujillo J (2016) Electron delocalization and electron density of small polycyclic aromatic hydrocarbons in singlet excited states. Phys Chem Chem Phys 18:11792–11799. https://doi.org/10.1039/c5cp06993a

    Article  PubMed  Google Scholar 

  16. Park YH, Cheong BS (2006) Theoretical investigation of electronic structures of the ground and excited states of pyrene and its derivatives. Curr Appl Phys 6:700–705. https://doi.org/10.1016/j.cap.2005.04.023

    Article  Google Scholar 

  17. Crawford AG, Dwyer AD, Liu Z, Steffen A, Beeby A, Pålsson LO, Tozer DJ, Marder TB (2011) Experimental and theoretical studies of the photophysical properties of 2- and 2,7-functionalized pyrene derivatives. J Am Chem Soc 133:13349–13362. https://doi.org/10.1021/ja2006862

    Article  CAS  PubMed  Google Scholar 

  18. Salzner U, Aydin A (2011) Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals. J Chem Theory Comput 7:2568–2583. https://doi.org/10.1021/ct2003447

    Article  CAS  PubMed  Google Scholar 

  19. Zara Z, Iqbal J, Ayub K, Irfan M, Mahmood A, Khera RA, Eliasson B (2017) A comparative study of DFT calculated and experimental UV/visible spectra for thirty carboline and carbazole based compounds. J Mol Struct 1149:282–298. https://doi.org/10.1016/j.molstruc.2017.07.093

    Article  CAS  Google Scholar 

  20. Garza AJ, Osman OI, Asiri AM, Scuseria GE (2014) Can gap tuning schemes of long-range corrected hybrid functionals improve the description of hyperpolarizabilities? J Phys Chem B 119:1202–1212. https://doi.org/10.1021/jp507226v

    Article  CAS  PubMed  Google Scholar 

  21. Cardinal JR, Mukerjee P (1978) Solvent effects on the ultraviolet spectra of benzene derivatives and naphthalene. Identification of polarity sensitive spectral characteristics. J Phys Chem 82:1614–1620. https://doi.org/10.1021/j100503a009

    Article  CAS  Google Scholar 

  22. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels−Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363. https://doi.org/10.1021/jp962071j

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T;JA, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  24. Weigend F (2003) Gaussian basis sets of quadruple zeta valence quality for atoms H-Kr. J Chem Phys 119:12753–12762. https://doi.org/10.1063/1.1627293

    Article  CAS  Google Scholar 

  25. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105. https://doi.org/10.1063/1.3484283

    Article  CAS  PubMed  Google Scholar 

  26. Bauzá A, Quiñonero D, Deyaì PM, Frontera A (2013) Is the use of diffuse functions essential for the properly description of noncovalent interactions involving anions? J Phys Chem A 117:2651–2655. https://doi.org/10.1021/jp312755z

    Article  CAS  PubMed  Google Scholar 

  27. Berkowitz J (1979) Photoabsorption, photoionization, and photoelectron spectroscopy, 1st edn. Academic, Cambridge

    Google Scholar 

  28. Hazell AC, Larsen FK, Lehmann MS (1972) A neutron diffraction study of the crystal structure of pyrene, C16H10. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:2977–2984. https://doi.org/10.1107/s0567740872007319

    Article  CAS  Google Scholar 

  29. Andersson TA, Hartonen KM, Riekkola ML (2005) Solubility of acenaphthene, anthracene, and pyrene in water at 50°C to 300°C. J Chem Eng Data 50:1177–1183. https://doi.org/10.1021/je0495886

    Article  CAS  Google Scholar 

  30. Nakajima A (1977) Fluorescence spectra of anthracene and pyrene in water and in aqueous surfactant solution. J Lumin. 15:277–282. https://doi.org/10.1016/0022-2313(77)90027-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the financial support of FAPDF, CNPq, and CAPES and the computational support of CENAPAD/SP and UnB/FINEP Institute of Chemistry Computational Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B. L. Martins.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graef, E.L., Martins, J.B.L. Analysis of lowest energy transitions at TD-DFT of pyrene in vacuum and solvent. J Mol Model 25, 183 (2019). https://doi.org/10.1007/s00894-019-4065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4065-9

Keywords

Navigation